Publications by authors named "Karen K Biron"

Cytomegalovirus infections are associated with severe morbidity and mortality is patients at risk for disease because of immune system disabilities; in particular, recipients of stem cell (HSCT) or solid organ (SOT) transplants. There are three systemic drugs approved for CMV treatment: ganciclovir, or its prodrug valganciclovir, foscarnet, and cidofovir. An anti-sense therapeutic, ISIS 2922, is also approved specifically as in intravitreal treatment for CMV retinitis.

View Article and Find Full Text PDF

Previous drug selection experiments resulted in the isolation of a human cytomegalovirus (CMV) UL97 phosphotransferase mutant resistant to the benzimidazole compound maribavir (1263W94), reflecting the anti-UL97 effect of this drug. Three other CMV strains were plaque purified during these experiments. These strains showed lower-grade resistance to maribavir than the UL97 mutant.

View Article and Find Full Text PDF

Since human cytomegalovirus (HCMV) does not infect or replicate in nonhuman cells and tissues, there are few animal models currently available for evaluation of antiviral therapies for these infections. In the present studies, we utilized two different models in which severe combined immunodeficient (SCID) mice were implanted with human fetal tissue that was subsequently infected with HCMV. In one model, human fetal retinal tissue was implanted into the anterior chamber of the SCID mouse eye, and in the second, human fetal thymus and liver (thy/liv) tissues were implanted under the kidney capsule.

View Article and Find Full Text PDF

New human cytomegalovirus (HCMV) therapies with novel mechanisms of action are needed to treat drug-resistant HCMV that arises during therapy with currently approved agents. 2-Bromo-5,6-dichloro-1-beta-D-ribofuranosyl-1H-benzimidazole (BDCRB) is an effective anti-HCMV agent with a novel mechanism of action, but problems with in vivo stability preclude clinical development. A D-ribopyranosyl derivative of BDCRB, GW275175X, displays similar antiviral activity without the in vivo stability problems.

View Article and Find Full Text PDF

The human cytomegalovirus UL97 protein is an unusual protein kinase that is able to autophosphorylate and to phosphorylate certain exogenous substrates, including nucleoside analogs such as ganciclovir. However, no natural substrate of UL97 in infected cells has been identified. We report here that recombinant UL44 protein became radiolabeled when incubated with recombinant UL97 and [(32)P]ATP and that both proteins could be coimmunoprecipitated by an antibody that recognizes either protein.

View Article and Find Full Text PDF

Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), and human herpesvirus 8 (HHV-8) are responsible for a number of clinical manifestations in both normal and immunocompromised individuals. The parent benzimidazole ribonucleosides evaluated in this series, 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (BDCRB) and maribavir (1263W94), are potent and selective inhibitors of human CMV replication. These nucleosides act by two different mechanisms.

View Article and Find Full Text PDF

Inhibition of human cytomegalovirus (HCMV) by 1263W94 was additive dosewise in combination with ganciclovir, acyclovir, and foscarnet. None of the commonly used anti-human immunodeficiency virus agents antagonized the inhibition of HCMV by 1263W94. The data were analyzed by a modified isobologram procedure that measures the strength and statistical significance of drug interactions.

View Article and Find Full Text PDF

1263W94 is a novel benzimidazole compound being developed for treatment of human cytomegalovirus infection. No adverse pharmacological effects were demonstrated in safety pharmacology studies with 1263W94. The minimal-effect dose in a 1-month rat study was 100 mg/kg/day, and the no-effect dose in a 1-month monkey study was 180 mg/kg/day.

View Article and Find Full Text PDF

Benzimidazole nucleosides have been shown to be potent inhibitors of human cytomegalovirus (HCMV) replication in vitro. As part of the exploration of structure-activity relationships within this series, we synthesized the 2-isopropylamino derivative (3322W93) of 1H-beta-D-ribofuranoside-2-bromo-5,6-dichlorobenzimidazole (BDCRB) and the biologically unnatural L-sugars corresponding to both compounds. One of the L derivatives, 1H-beta-L-ribofuranoside-2-isopropylamino-5,6-dichlorobenzimidazole (1263W94), showed significant antiviral potency in vitro against both laboratory HCMV strains and clinical HCMV isolates, including those resistant to ganciclovir (GCV), foscarnet, and BDCRB.

View Article and Find Full Text PDF

We have previously reported that 2,5,6-trichloro-1-(beta-D-ribofuranosyl)benzimidazole (TCRB) and its 2-bromo analog (2-bromo-5,6-dichloro-1-(beta-D-ribofuranosy)benzimidazole [BDCRB]) are potent and selective inhibitors of human cytomegalovirus (HCMV) replication that block viral DNA maturation via HCMV gene products UL89 and UL56. To determine if phosphorylation is required for antiviral activity, the in vitro metabolism of BDCRB was examined and the antiviral activities of nonphosphorylatable 5'-deoxy analogs were determined. Reverse-phase high-performance liquid chromatography (HPLC) analysis of extracts from uninfected and HCMV-infected cells incubated with [(3)H]BDCRB revealed two major metabolites.

View Article and Find Full Text PDF