Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H2DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay).
View Article and Find Full Text PDFSince the identification of LRP5 as the causative gene for the osteoporosis pseudoglioma syndrome (OPPG) as well as the high bone mass (HBM) phenotype, LRP5 and the Wnt/β-catenin signaling have been extensively studied for their role in the differentiation and proliferation of osteoblasts, in the apoptosis of osteoblasts and osteocytes and in the response of bone to mechanical loading. However, more recently the direct effect of LRP5 on osteoblasts and bone formation has been questioned. Gene expression studies showed that mice lacking lrp5 have increased expression of tph1, the rate limiting enzyme for the production of serotonin in the gut.
View Article and Find Full Text PDFNesfatin-1 is the N-terminal fragment of nucleobindin-2 (NUCB2) that was identified as a novel satiety molecule in rodents. The protein is reported to exert anorexigenic effects and appears to play an important role in hypothalamic pathways regulating energy homeostasis and food intake. In this study, we hypothesized that mutations in the nesfatin encoding gene NUCB2 might cause obesity in humans.
View Article and Find Full Text PDFHumans lacking sclerostin display progressive bone overgrowth due to increased bone formation. Although it is well established that sclerostin is an osteocyte-secreted bone formation inhibitor, the underlying molecular mechanisms are not fully elucidated. We identified in tandem affinity purification proteomics screens LRP4 (low density lipoprotein-related protein 4) as a sclerostin interaction partner.
View Article and Find Full Text PDFSclerosteosis is a rare bone dysplasia characterized by greatly increased bone mass, especially of the long bones and the skull. Patients are tall, show facial asymmetry and often have syndactyly. Clinical complications are due to entrapment of cranial nerves.
View Article and Find Full Text PDFRANK (receptor activator of nuclear factor-κB), encoded by TNFRSF11A, is a key protein in osteoclastogenesis. TNFRSF11A mutations cause Paget's disease of bone (PDB)-like diseases (ie, familial expansile osteolysis, expansile skeletal hyperphosphatasia, and early-onset PDB) and an osteoclast-poor form of osteopetrosis. However, no TNFRSF11A mutations have been found in classic PDB, neither in familial nor in isolated cases.
View Article and Find Full Text PDFSclerosteosis is a severe, rare, autosomal recessive bone condition that is characterized by a progressive craniotubular hyperostosis. The main features are a significant sclerosis of the long bones, ribs, pelvis, and skull, leading to facial distortion and entrapment of cranial nerves. Clinical features include a tall stature, nail dysplasia, cutaneous syndactyly of some fingers, and raised intracranial pressure.
View Article and Find Full Text PDFPaget's Disease of Bone (PDB) is one of the most frequent metabolic bone diseases, affecting 1-5% of Western populations older than 55 years. Mutations in the sequestosome1 (SQSTM1) gene cause PDB in about one-third of familial PDB cases and in 2.4-9.
View Article and Find Full Text PDF