The synthesis of pure δ-MoN with desired superconducting properties usually requires extreme conditions, such as high temperature and high pressure, which hinders its fundamental studies and applications. Herein, by using a chemical solution method, epitaxial δ-MoN thin films have been grown on c-cut Al(2)O(3) substrates at a temperature lower than 900 °C and an ambient pressure. The films are phase pure and show a T(c) of 13.
View Article and Find Full Text PDFA new redox-active, tris(amido) ligand platform, bis(2-isopropylamino-4-methoxyphenylamine [NNN(cat)](3-), has been prepared and used in the preparation of tantalum(V) complexes. The ligand was prepared in its protonated form by a three-step procedure from commercially available 4-methoxy-2-nitroaniline and 1-iodo-4-methoxy-2-nitrobenzene. Direct reaction of [NNN(cat)]H(3) with TaCl(2)Me(3) afforded five-coordinate [NNN(cat)]TaCl(2) (1), which accepted the strong sigma-donor ligand (t)BuNC to form the six-coordinate adduct [NNN(cat)]TaCl(2)(CN(t)Bu) (2).
View Article and Find Full Text PDFAn isostructural series of titanium, zirconium, and hafnium complexes, M[ap] 2L 2 (M = Ti, Zr, Hf; L = THF, pyridine), of the redox-active 4,6-di- tert-butyl-2- tert-butylamidophenolate ligand ([ap] (2-)) have been prepared. The zirconium and hafnium derivatives react readily with halogen oxidants such as XeF 2, PhICl 2, and Br 2, leading to products in which one-electron oxidation of each [ap] (2-) ligand accompanies halide addition to the metal center. Iodine proved to be too weak of an oxidant to yield the corresponding oxidative addition product, and under no conditions could halogen oxidative addition products be obtained for titanium.
View Article and Find Full Text PDFThe new complex, [Zr(pda)2]n (1, pda2- = N,N'-bis(neo-pentyl)-ortho-phenylenediamide, n = 1 or 2), prepared by the reaction of 2 equiv of pdaLi2 with ZrCl4, reacts rapidly with halogen oxidants to afford the new product ZrX2(disq)2 (3, X = Cl, Br, I; disq- = N,N'-bis(neo-pentyl)-ortho-diiminosemiquinonate) in which each redox-active ligand has been oxidized by one electron. The oxidation products 3a-c have been structurally characterized and display an unusual parallel stacked arrangement of the disq- ligands in the solid state, with a separation of approximately 3 A. Density functional calculations show a bonding-type interaction between the SOMOs of the disq- ligands to form a unique HOMO while the antibonding linear combination forms a unique LUMO.
View Article and Find Full Text PDFTwo-electron reactivity of [N2O2red]ZrL3 (1a, N2O2(red) = N,N'-bis(3,5-di-tert-butyl-2-phenoxy)-1,2-phenylenediamide, L = THF) was explored with halogens and 1,2-diphenylhydrazine. Despite a formal d0 zirconium(IV) metal center, halogen oxidative addition occurred to form [N2O2(ox)]ZrCl2(THF) (2) with two-electron oxidation of the ligand. This ligand redox activity allows catalytic reactivity with 1,2-diphenylhydrazine resulting in disproportionation to form aniline and azobenzene via a putative zirconium-imide intermediate.
View Article and Find Full Text PDFThe synthesis, characterization, and solution behavior of a series of six-coordinate zirconium(IV) dianions [ZrX2(ap)2]2- (ap = 2,4-di-tert-butyl-6-(tert-butylamido)phenolate; X = Ph, 3a; X = p-tolyl, 3b; X = Me, 4; X = NMe2, 5) are described. Complexes 3-5 were prepared by treating the neutral zirconium complex Zr(ap)2(THF)2 (1) with 2 equiv of LiX or by the direct reaction of apLi2 and LiX with ZrCl4. The complexes were isolated as lithium-etherate salts, and they were characterized by NMR spectroscopy and single-crystal X-ray diffraction.
View Article and Find Full Text PDFA strategy to enable reactivity analogous to oxidative addition is presented for d(0) transition-metal complexes. The reaction of the redox-active ligand 2,4-di-tert-butyl-6-tert-butylamidophenolate (ap) with ZrCl(4)(THF)(2) affords the new complex Zr(IV)(ap)(2)(THF)(2). This compound is formally zirconium(IV) and contains no d electrons; however, exposure of Zr(IV)(ap)(2)(THF)(2) to chlorine gas results in swift chlorine addition at the zirconium metal center via one-electron oxidation of each ap ligand.
View Article and Find Full Text PDFAddition of the dilithium salt, ortho-(Me3SiNLi)2C6H4, to ZrCl4 affords a base-free, D2d-symmetric complex Zr(IV)[ortho-(Me3SiN)2C6H4]2 (2), with rigorously planar ortho-phenylenediamine ligands. Lewis acidic 2 readily coordinates donor ligands such as NHEt2 to give the five-coordinate complex, Zr(IV)(NHEt2)[ortho-(Me3SiN)2C6H4]2 (3), which is also accessible by the reaction of Zr(NEt2)4 with 2 equiv of ortho-(Me3SiNH)2C6H4. Aryl azides react with 2 and 3 to give an unusual tetra-azametallacycle complex, 4, via 1,2-addition of a ligand N-Si bond to the organic azide.
View Article and Find Full Text PDF