Publications by authors named "Karen Homer"

Many bacterial toxins covalently modify components of eukaryotic signalling pathways in a highly specific manner, and can be used as powerful tools to decipher the function of their molecular target(s). The Pasteurella multocida toxin (PMT) mediates its cellular effects through the activation of members of three of the four heterotrimeric G-protein families, G(q), G(12) and G(i). PMT has been shown by others to lead to the deamidation of recombinant Gα(i) at Gln-205 to inhibit its intrinsic GTPase activity.

View Article and Find Full Text PDF

The pneumococcus obtains its energy from the metabolism of host glycosides. Therefore, efficient degradation of host glycoproteins is integral to pneumococcal virulence. In search of novel pneumococcal glycosidases, we characterized the Streptococcus pneumoniae strain D39 protein encoded by SPD_0065 and found that this gene encodes a beta-galactosidase.

View Article and Find Full Text PDF

Knowledge of the in vivo physiology and metabolism of Streptococcus pneumoniae is limited, even though pneumococci rely on efficient acquisition and metabolism of the host nutrients for growth and survival. Because the nutrient-limited, hypoxic host tissues favor mixed-acid fermentation, we studied the role of the pneumococcal pyruvate formate lyase (PFL), a key enzyme in mixed-acid fermentation, which is activated posttranslationally by PFL-activating enzyme (PFL-AE). Mutations were introduced to two putative pfl genes, SPD0235 and SPD0420, and two putative pflA genes, SPD0229 and SPD1774.

View Article and Find Full Text PDF

Sialidase activity is a putative virulence factor of the anaerobic periodontal pathogen Tannerella forsythia, but it is uncertain which genes encode this activity. Characterization of a putative sialidase, SiaHI, by others, indicated that this protein alone may not be responsible for all of the sialidase activity. We describe a second sialidase in T.

View Article and Find Full Text PDF

The Whitehall Study is a prospective epidemiological study of cardiovascular risk factors in healthy members of the British Civil Service, which has identified psychological distress as a major risk factor for coronary heart disease. The levels of circulating Hsp60 in 860 participants from the Whitehall cohort and 761 individuals diagnosed with diabetes have been measured and related to psychological, biological, and genetic factors. In the Whitehall participants, concentrations of Hsp60 ranged from undetectable to mg/mL levels.

View Article and Find Full Text PDF

Cell surface lipoproteins are important for the full virulence of several bacterial pathogens, including Streptococcus pneumoniae. Processing of prolipoproteins seems to be conserved among different bacterial species, and requires type II signal peptidase (Lsp) mediated cleavage of the N-terminal signal peptide to form the mature lipoprotein. Lsp has been suggested as a target for new antibiotic therapies, but at present there are only limited data on the function of Lsp for Gram-positive bacterial pathogens.

View Article and Find Full Text PDF

Streptococcus mutans has a large number of transporters apparently involved in the uptake of carbohydrates. At least two of these, the multiple sugar metabolism transporter, MsmEFGK, and the previously uncharacterized MalXFGK, are members of the ATP-binding cassette (ABC) superfamily. Mutation analysis revealed that the MsmEFGK and MalXFGK transporters are principally involved in the uptake of distinct disaccharides and/or oligosaccharides.

View Article and Find Full Text PDF

We report that a phosphoenolpyruvate-dependent phosphotransferase system, MalT, is the principal maltose transporter for Streptococcus mutans. MalT also contributes to maltotriose uptake. Since maltose and maltodextrins are products of starch degradation found in saliva, the ability to take up and ferment these carbohydrates may contribute to dental caries.

View Article and Find Full Text PDF

The predominant surface proteins of biofilm and planktonic Actinomyces naeslundii, a primary colonizer of the tooth surface, were examined. Seventy-nine proteins (the products of 52 genes) were identified in biofilm cells, and 30 of these, including adhesins, chaperones, and stress-response proteins, were significantly up-regulated relative to planktonic cells.

View Article and Find Full Text PDF

Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions.

View Article and Find Full Text PDF

Streptococcus mutans, a major etiological agent of dental caries, causes demineralization of the tooth tissue due to the formation of acids from dietary carbohydrates. Dominant among the virulence determinants of this organism are aciduricity and acidogenicity, the abilities to grow at low pH and to produce acid, respectively. The mechanisms underlying the ability of S.

View Article and Find Full Text PDF