Publications by authors named "Karen Hecht"

Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties.

View Article and Find Full Text PDF

Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function.

View Article and Find Full Text PDF

In vivo functionalization of diatom biosilica frustules by genetic manipulation requires careful consideration of the overall structure and function of complex fusion proteins. Although we previously had transformed with constructs containing a single domain antibody (sdAb) raised against the Sterne strain, which detected an epitope of the surface layer protein EA1 accessible in lysed spores, we initially were unsuccessful with constructs encoding a similar sdAb that detected an epitope of EA1 accessible in intact spores and vegetative cells. This discrepancy limited the usefulness of the system as an environmental biosensor for .

View Article and Find Full Text PDF

Cell permeable biarsenical fluorescent dyes built around a cyanine scaffold (AsCy3) create the ability to monitor the structural dynamics of tagged proteins in living cells. To extend the capability of this photostable and bright biarsenical probe to site-specifically label cellular proteins, we have compared the ability of AsCy3 to label two different tagging sequences (i.e.

View Article and Find Full Text PDF

Here, we identify the importance of molecular crowding agents in the functional stabilization of scFv antibodies. Antibodies were tethered through an engineered calmodulin (CaM)-binding peptide into a stimulus-responsive hydrogel composed of poly(ethylene glycol) (PEG)-functionalized CaM. Macromolecular crowding is modulated by transient heating, which decreases effective pore sizes.

View Article and Find Full Text PDF

Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that will enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39-amino-acid targeting sequence (Sil3T8) that directs a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundance of >200 000 proteins per frustule. Using either a fluorescent ligand bound to the scFv or the intrinsic fluorescence of EGFP, we monitored protein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability.

View Article and Find Full Text PDF

The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins comprising either enhanced green fluorescent protein (EGFP) or single chain antibodies engineered with a tetracysteine tagging sequence. Of interest were the site-specific binding of (1) the fluorescent biarsenical probe AsCy3 and AsCy3e to the tetracysteine tagged fusion proteins and (2) high and low molecular mass antigens, the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT), to biosilica-immobilized single chain antibodies. Analysis of biarsenical probe binding using fluorescence and structured illumination microscopy indicated differential colocalization with EGFP in nascent and mature biosilica, supporting the use of either EGFP or bound AsCy3 and AsCy3e in studying biosilica maturation.

View Article and Find Full Text PDF

The vacuole in the yeast plays a number of essential roles, and to provide some of these required functions the vacuole harbors at least seven distinct proteases. These proteases exhibit a range of activities and different classifications, and they follow unique paths to arrive at their ultimate, common destination in the cell. This review will first summarize the major functions of the yeast vacuole and delineate how proteins are targeted to this organelle.

View Article and Find Full Text PDF

Objectives: Individuals with bipolar disorder (BD) are disproportionately affected by symptoms of being overweight and metabolic syndrome when compared to the general population. The pertinence of this observation is underscored by observations that excess weight is associated with a more complex illness presentation, course, and outcome in BD. We present the first preliminary report of our BIPFAT study, which explored shared hypothesized pathophysiological pathways between being overweight and having BD.

View Article and Find Full Text PDF

The systematic and complete characterization of the Saccharomyces cerevisiae genome and proteome has been stalled in some cases by misannotated genes. One such gene is YBR074W, which was initially annotated as two independent open reading frames (ORFs). We now report on Ybr074, a metalloprotease family member that was initially predicted to reside in the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Huntington's disease (HD) and multiple sclerosis (MS) are both chronic progressive illnesses posing a serious challenge to affected patients and families. Sexual dysfunction in HD as well as in MS is a very common problem, although it is unclear whether the dysfunction is caused by the chronic illness itself or by the sociopsychiatric burden related to the illness. Twenty-nine patients with HD and 27 patients with MS each participated in a semistructured interview and several standardized questionnaires concerning partnership, sexual function, and body image.

View Article and Find Full Text PDF

Continuum electrostatic approaches have been extremely successful at describing the charged nature of soluble proteins and how they interact with binding partners. However, it is unclear whether continuum methods can be used to quantitatively understand the energetics of membrane protein insertion and stability. Recent translation experiments suggest that the energy required to insert charged peptides into membranes is much smaller than predicted by present continuum theories.

View Article and Find Full Text PDF

The cation-pi interaction is an electrostatic attraction between a positive charge and the conjugated pi electrons of an aromatic ring. These interactions are well documented in soluble proteins and can be both structurally and functionally important. Catalyzed by observations in our laboratory that an Ala- and Ile-rich two-helix transmembrane segment tended to form SDS-resistant dimers upon the incorporation of suitably located Trp residues, here we have constructed a library of related constructs to study systematically the impact of aromatic-aromatic and cation-pi interactions on tertiary structure formation within an Escherichia coli membrane.

View Article and Find Full Text PDF