Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom.
View Article and Find Full Text PDFPhytoplankton blooms fuel marine food webs with labile dissolved carbon and also lead to the formation of particulate organic matter composed of living and dead algal cells. These particles contribute to carbon sequestration and are sites of intense algal-bacterial interactions, providing diverse niches for microbes to thrive. We analyzed 16S and 18S ribosomal RNA gene amplicon sequences obtained from 51 time points and metaproteomes from 3 time points during a spring phytoplankton bloom in a shallow location (6-10 m depth) in the North Sea.
View Article and Find Full Text PDFNet growth of microbial populations, that is, changes in abundances over time, can be studied using 16S rRNA fluorescence hybridization (FISH). However, this approach does not differentiate between mortality and cell division rates. We used FISH-based image cytometry in combination with dilution culture experiments to study net growth, cell division, and mortality rates of four bacterial taxa over two distinct phytoplankton blooms: the oligotrophs SAR11 and SAR86, and the copiotrophic phylum , and its genus .
View Article and Find Full Text PDFGlobal change puts coastal marine systems under pressure, affecting community structure and functioning. Here, we conducted a mesocosm experiment with an integrated multiple driver design to assess the impact of future global change scenarios on plankton, a key component of marine food webs. The experimental treatments were based on the RCP 6.
View Article and Find Full Text PDFPhytoplanktonic organisms are particularly sensitive to environmental change, and, as they represent a direct link between abiotic and biotic compartments within the marine food web, changes in the functional structure of phytoplankton communities can result in profound impacts on ecosystem functioning. Using a trait-based approach, we examined changes in the functional structure of the southern North Sea phytoplankton over the past five decades in relation to environmental conditions. We identified a shift in functional structure between 1998 and 2004 which coincides with a pronounced increase in diatom and decrease in dinoflagellate abundances, and we provide a mechanistic explanation for this taxonomic change.
View Article and Find Full Text PDFIn this study, we created a dataset of a continuous three-year 18S metabarcoding survey to identify eukaryotic parasitoids, and potential connections to hosts at the Long-Term Ecological Research station Helgoland Roads. The importance of parasites and parasitoids for food web dynamics has previously been recognized mostly in terrestrial and freshwater systems, while marine planktonic parasitoids have been understudied in comparison to those. Therefore, the occurrence and role of parasites and parasitoids remains mostly unconsidered in the marine environment.
View Article and Find Full Text PDFMarine fungi are an important component of pelagic planktonic communities. However, it is not yet clear how individual fungal taxa are integrated in marine processes of the microbial loop and food webs. Most likely, biotic interactions play a major role in shaping the fungal community structure.
View Article and Find Full Text PDFIn May 2016, the remote-controlled Automated Filtration System for Marine Microbes (AUTOFIM) was implemented in parallel to the Long Term Ecological Research (LTER) observatory Helgoland Roads in the German Bight. We collected samples for characterization of dynamics within the eukaryotic microbial communities at the end of a phytoplankton bloom via 18S meta-barcoding. Understanding consequences of environmental change for key marine ecosystem processes, such as phytoplankton bloom dynamics requires information on biodiversity and species occurrences with adequate temporal and taxonomic resolution via time series observations.
View Article and Find Full Text PDFThe dynamics of diatoms and dinoflagellates have been monitored for many decades at the Helgoland Roads Long-Term Ecological Research site and are relatively well understood. In contrast, small-sized eukaryotic microbes and their community changes are still much more elusive, mainly due to their small size and uniform morphology, which makes them difficult to identify microscopically. By using next-generation sequencing, we wanted to shed light on the Helgoland planktonic community dynamics, including nano- and picoplankton, during a spring bloom.
View Article and Find Full Text PDFSpring phytoplankton blooms in temperate environments contribute disproportionately to global marine productivity. Bloom-derived organic matter, much of it occurring as polysaccharides, fuels biogeochemical cycles driven by interacting autotrophic and heterotrophic communities. We tracked changes in the mode of polysaccharide utilization by heterotrophic bacteria during the course of a diatom-dominated bloom in the German Bight, North Sea.
View Article and Find Full Text PDFTo understand and predict the outbreak of red tides, which are often dominated by mixotrophic dinoflagellates (MTDs), the effects of "top-down" control by co-occurring predators on red-tide MTDs should be taken into consideration. We studied the numerical and functional responses of the tintinnid ciliate Favella ehrenbergii feeding on two red-tide MTDs, Scrippsiella trochoidea and Heterocapsa triquetra, under single and mixed prey conditions. Our results suggest that a mixed diet could support a better growth of predators compared to a monodiet.
View Article and Find Full Text PDFPlankton communities consist of complex microbial consortia that change over time. These fluctuations can be only partially explained by limiting resources. Biotic factors such as herbivores and pathogens also contribute to the control of algal blooms.
View Article and Find Full Text PDFClimate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance.
View Article and Find Full Text PDFCarbohydrates represent an important fraction of labile and semi-labile marine organic matter that is mainly comprised of exopolymeric substances derived from phytoplankton exudation and decay. This study investigates the composition of total combined carbohydrates (tCCHO; >1 kDa) and the community development of free-living (0.2-3 μm) and particle-associated (PA) (3-10 μm) bacterioplankton during a spring phytoplankton bloom in the southern North Sea.
View Article and Find Full Text PDFA process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years.
View Article and Find Full Text PDFRemineralization and transformation of dissolved organic matter (DOM) by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition (BCC) at Helgoland Roads (North Sea) in relation to variation of molecular DOM composition and various environmental parameters on short-time scales.
View Article and Find Full Text PDFStudies dealing with the effects of changing global temperatures on living organisms typically concentrate on annual mean temperatures. This, however, might not be the best approach in temperate systems with large seasonality where the mean annual temperature is actually not experienced very frequently. The mean annual temperature across a 50-year, daily time series of measurements at Helgoland Roads (54.
View Article and Find Full Text PDFDespite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2013
In this study we model population dynamics in a three-species food web with heterogeneous resources and intraguild predation by using a nonspatial Lotka-Volterra system with a density-dependent interaction of resource items. The model consists of two predators with an intraguild predation (IGP) relation competing for a common resource. The resource is subdivided into subpopulations of different quality that are distinguished by grazing rates of the two predators, contact rates between subpopulations and mortality rates.
View Article and Find Full Text PDFExplaining the coexistence of multiple species in the competition and predation theatre has proven a great challenge. Traditional intraguild predation (IGP) models have only relatively small regions of stable coexistence of all species. Here, we investigate potential additional mechanisms that extend these regions of stable coexistence.
View Article and Find Full Text PDFPhytoplankton blooms characterize temperate ocean margin zones in spring. We investigated the bacterioplankton response to a diatom bloom in the North Sea and observed a dynamic succession of populations at genus-level resolution. Taxonomically distinct expressions of carbohydrate-active enzymes (transporters; in particular, TonB-dependent transporters) and phosphate acquisition strategies were found, indicating that distinct populations of Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria are specialized for successive decomposition of algal-derived organic matter.
View Article and Find Full Text PDF