Ca signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca-activated Cl channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca-activated K channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function.
View Article and Find Full Text PDFPressure-dependent chronotropy of murine lymphatic collecting vessels relies on the activation of the Ca2+-activated chloride channel encoded by Anoctamin 1 (Ano1) in lymphatic muscle cells. Genetic ablation or pharmacological inhibition of ANO1 results in a significant reduction in basal contraction frequency and essentially complete loss of pressure-dependent frequency modulation by decreasing the rate of the diastolic depolarization phase of the ionic pacemaker in lymphatic muscle cells (LMCs). Oscillating Ca2+ release from sarcoendoplasmic reticulum Ca2+ channels has been hypothesized to drive ANO1 activity during diastole, but the source of Ca2+ for ANO1 activation in smooth muscle remains unclear.
View Article and Find Full Text PDFGut dysbiosis may result in various diseases, such as metabolic and neurobehavioral disorders. Exposure to endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and ethinyl estradiol (EE), especially during development, may also increase the risk for such disorders. An unexplored possibility is that EDC-exposure might alter the gut microbial composition.
View Article and Find Full Text PDFOur prior work showed that a novel microbiome resides in the seminal vesicles of wild-type and oestrogen receptor α (Esr1) knock-out mice and is impacted by the presence of functional Esr1 genes. The seminal fluid microbiome (SFM) may influence the health and reproductive status of the male, along with that of his partner and offspring. A high-fat diet (HFD) alters metabolites and other factors within seminal fluid and might affect the SFM.
View Article and Find Full Text PDFBacteria harbored in the male reproductive system may influence reproductive function and health of the male and result in developmental origins of adult health and disease (DOHaD) effects in his offspring. Such effects could be due to the seminal fluid, which is slightly basic and enriched with carbohydrates; thereby, creating an ideal habitat for microbes or a potential seminal fluid microbiome (SFM). Using wild-type (WT) and estrogen receptor-alpha (ESR1) knockout (KO) male mice, we describe a unique SFM whose inhabitants differ from gut microbes.
View Article and Find Full Text PDF