Publications by authors named "Karen Guerrero Vazquez"

Cell-Penetrating Peptides (CPP) are emerging as an alternative to small-molecule drugs to expand the range of biomolecules that can be targeted for therapeutic purposes. Due to the importance of identifying and designing new CPP, a great variety of predictors have been developed to achieve these goals. To establish a ranking for these predictors, a couple of recent studies compared their performances on specific datasets, yet their conclusions cannot determine if the ranking obtained is due to the model, the set of descriptors or the datasets used to test the predictors.

View Article and Find Full Text PDF

The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad-spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) have gained the attention of the research community for being an alternative to conventional antimicrobials to fight antibiotic resistance and for displaying other pharmacologically relevant activities, such as cell penetration, autophagy induction, immunomodulation, among others. The identification of AMPs had been accomplished by combining computational and experimental approaches and have been mostly restricted to self-contained peptides despite accumulated evidence indicating AMPs may be found embedded within proteins, the functions of which are not necessarily associated with antimicrobials. To address this limitation, we propose a machine-learning (ML)-based pipeline to identify AMPs that are embedded in proteomes.

View Article and Find Full Text PDF