Electrophoresis, the motion of charged species through liquids and pores under the influence of an external electric field, has been the principle source of chemical pumping for numerous micro- and nanofluidic device platforms. Recent measurements of ion currents through single or few carbon nanotube channels have yielded values of ion mobility that range from close to the bulk mobility to values that are two to seven orders of magnitude higher than the bulk mobility. However, these experiments cannot directly measure ion flux.
View Article and Find Full Text PDFCarbon nanotube membranes with inner diameter ranging from 1.5-7 nm were examined for enhanced electroosmotic flow. After functionalization via electrochemical diazonium grafting and carbodiimide coupling reaction, it was found that neutral caffeine molecules can be efficiently pumped via electroosmosis.
View Article and Find Full Text PDF