Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2.
View Article and Find Full Text PDFGenes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2.
View Article and Find Full Text PDFIn addition to their traditional roles in immune cell communication, cytokines regulate brain development. Cytokines are known to influence neural cell generation, differentiation, maturation, and survival. However, most work on the role of cytokines in brain development investigates rodents or focuses on prenatal events.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
April 2017
Background: Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that lacks adequate screening tools, often delaying diagnosis and therapeutic interventions. Despite a substantial genetic component, no single gene variant accounts for >1 % of ASD incidence. Epigenetic mechanisms that include microRNAs (miRNAs) may contribute to the ASD phenotype by altering networks of neurodevelopmental genes.
View Article and Find Full Text PDFThrombospondin-1 (TSP-1) is an important regulator of vascular smooth muscle cell (VSMC) physiology and gene expression. MicroRNAs (microRNA), small molecules that regulate protein translation, have emerged as potent regulators of cell function. MicroRNAs have been shown to be involved in intimal hyperplasia, atherosclerosis, and upregulated in the vasculature in diabetes.
View Article and Find Full Text PDFGrowing evidence for genetic overlap between schizophrenia (SCZ) and bipolar disorder (BPD) suggests that causal variants of large effect on disease risk may cross traditional diagnostic boundaries. Extended multigenerational families with both SCZ and BPD cases can be a valuable resource for discovery of shared biological pathways because they can reveal the natural evolution of the underlying genetic disruptions and their phenotypic expression. We investigated a deletion at the SLC1A1 glutamate transporter gene originally identified as a copy number variant exclusively carried by members of a 5-generation Palauan family.
View Article and Find Full Text PDFBackground: Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
June 2012
Recent family and genome-wide association studies strongly suggest shared genetic risk factors for schizophrenia (SZ) and bipolar disorder (BP). However, linkage studies have not been used to test for statistically significant genome-wide overlap between them. Forty-seven Portuguese families with sibpairs concordant for SZ, BP, or psychosis (PSY, which includes either SZ or psychotic BP) were genotyped for over 57,000 markers using the Affymetrix 50K Xba SNP array.
View Article and Find Full Text PDFObjective: Diabetes is associated with a more aggressive form of atherosclerosis. Thrombospondin-1 (TSP-1), an extracellular matrix protein, is an acute-phase reactant that induces vascular smooth muscle (VSMC) migration and proliferation in areas of vascular injury and is also up-regulated in VSMCs exposed to hyperglycemia. This study tested the hypothesis that hyperglycemia amplifies the expression of genes induced by TSP-1 in VSMCs.
View Article and Find Full Text PDFPurpose: Angiogenesis is critical in normal development and in tumor growth. Experimentally, cyclosporine A (CyA) inhibits angiogenesis in an in vivo mouse model and an in vitro capillary tube model. The mechanisms behind its antiangiogenic effects are not well characterized.
View Article and Find Full Text PDFUniparental isodisomy (iUPD) is a rare genetic condition caused by non-disjunction during meiosis that ultimately leads to a duplication of either the maternal or paternal chromosome in the affected individual. Two types of disorders can result, those due to imprinted genes and those due to homozygosity of recessive disease-causing mutations. Here, we describe the third known case of complete chromosome 4 iUPD of maternal origin.
View Article and Find Full Text PDFPurpose: Investigate the molecular determinants of retinal regeneration in adult vertebrates by analyzing the gene expression of control and post-lesion retina of adult zebrafish, a system that regenerates following injury.
Methods: Gene expression of zebrafish retina and brain were determined with DNA microarray, RT-PCR, and real-time quantitative PCR analyses. Damaged retinas and their corresponding controls were analyzed 2-5 days post-lesion (acute injury condition) or 14 d post-lesion (cell regeneration condition).
We performed global RNA transcript analysis and comprehensive gene group analysis of peripheral blood leukocyte (PBL) RNA from two groups of matched sib-pairs that were discordant for either schizophrenia (n = 33 sib-pairs) or bipolar disorder (n = 5 sib-pairs). The pairs chosen for these analyses were selected from families with known patterns of genetic linkage (5q for schizophrenia and 6q for bipolar disorder). At the single gene level, we obtained lists of the transcripts with the most significant changes in expression and from these lists determined those with the highest degree of predictive power for classifying subjects according to diagnosis in these samples.
View Article and Find Full Text PDFWe recently reported genome-wide significant linkage to chromosome 6q for bipolar disorder, in a study of 25 Portuguese families, using the Human Mapping Assay Xba 131 (HMA10K). To explore the generalizability of this finding, we reanalyzed our SNP linkage data according to the families' geographic origin. Specifically, the 25 families included 20 families from the Portuguese island collection (PIC; 15 families from the Azores Islands and 5 from the Madeira Islands) and 5 families from continental Portugal.
View Article and Find Full Text PDF