Publications by authors named "Karen Garrett"

Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop.

View Article and Find Full Text PDF

Disaster plant pathology addresses how natural and human-driven disasters impact plant diseases and the requirements for smart management solutions. Local to global drivers of plant disease change in response to disasters, often creating environments more conducive to plant disease. Most disasters have indirect effects on plant health through factors such as disrupted supply chains and damaged infrastructure.

View Article and Find Full Text PDF

Objective: HIV molecular transmission network typologies have previously demonstrated associations to transmission risk; however, few studies have evaluated their predictive potential in anticipating future transmission events. To assess this, we tested multiple models on statewide surveillance data from the Florida Department of Health.

Design: This was a retrospective, observational cohort study examining the incidence of new HIV molecular linkages within the existing molecular network of persons with HIV (PWH) in Florida.

View Article and Find Full Text PDF

Understanding factors influencing microbial interactions, and designing methods to identify key taxa that are candidates for synthetic communities, or SynComs, are complex challenges for achieving microbiome-based agriculture. Here, we study how grafting and the choice of rootstock influences root-associated fungal communities in a grafted tomato system. We studied three tomato rootstocks (BHN589, RST-04-106, and Maxifort) grafted to a BHN589 scion and profiled the fungal communities in the endosphere and rhizosphere by sequencing the internal transcribed spacer (ITS2).

View Article and Find Full Text PDF

The Global Plant Health Assessment (GPHA) is a collective, volunteer-based effort to assemble expert opinions on plant health and disease impacts on ecosystem services based on published scientific evidence. The GPHA considers a range of forest, agricultural, and urban systems worldwide. These are referred to as (Ecoregion × Plant System), i.

View Article and Find Full Text PDF

Virome analysis high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health.

View Article and Find Full Text PDF

Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health.

View Article and Find Full Text PDF

Bacterial wilt, caused by the species complex (RSSC), is the most destructive potato disease in Kenya. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with bacterial wilt of potato in Kenya, (ii) generate an RSSC distribution map for epidemiological inference, and (iii) determine whether phylotype II sequevar 1 strains exhibit epidemic clonality. Surveys were conducted in 2018 and 2019, in which tubers from wilting potato plants and stem samples of potential alternative hosts were collected for pathogen isolation.

View Article and Find Full Text PDF

Drought stress is an alarming constraint to plant growth, development, and productivity worldwide. However, plant-associated bacteria, fungi, and viruses can enhance stress resistance and cope with the negative impacts of drought through the induction of various mechanisms, which involve plant biochemical and physiological changes. These mechanisms include osmotic adjustment, antioxidant enzyme enhancement, modification in phytohormonal levels, biofilm production, increased water and nutrient uptake as well as increased gas exchange and water use efficiency.

View Article and Find Full Text PDF

Modern agricultural practices increase the potential for plant pathogen spread, while the advent of affordable whole genome sequencing enables in-depth studies of pathogen movement. Population genomic studies may decipher pathogen movement and population structure as a result of complex agricultural production systems. We used whole genome sequences of 281 Xanthomonas perforans strains collected within one tomato production season across Florida and southern Georgia fields to test for population genetic structure associated with tomato production system variables.

View Article and Find Full Text PDF

Plant disease outbreaks are increasing and threaten food security for the vulnerable in many areas of the world. Now a global human pandemic is threatening the health of millions on our planet. A stable, nutritious food supply will be needed to lift people out of poverty and improve health outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Seed systems research is really important for reaching goals that help end hunger and improve nutrition, but it's challenging to get new seeds to different farmers.
  • A group of over 50 scientists found gaps in knowledge about how seeds for crops like bananas and potatoes are used and suggested ways to improve how we think about and help these seed systems.
  • They believe that working better together between researchers and farmers can help more farmers use newer seed varieties, which would lead to better crops and food for everyone.
View Article and Find Full Text PDF

Before 1991, was the causal agent of bacterial spot of tomato in Florida but was quickly replaced by . The population has changed in genotype and phenotype despite lack of a clear selection pressure. To determine the current population in Florida, we collected 585 strains from 70 tomato fields, representing 22 farms across eight counties, in the Florida tomato production region.

View Article and Find Full Text PDF

The geographic pattern of cropland is an important risk factor for invasion and saturation by crop-specific pathogens and arthropods. Understanding cropland networks supports smart pest sampling and mitigation strategies. We evaluate global networks of cropland connectivity for key vegetatively propagated crops (banana and plantain, cassava, potato, sweet potato, and yam) important for food security in the tropics.

View Article and Find Full Text PDF

Temperature response curves under diurnal oscillating temperatures differ from those under constant conditions for all stages of the infection cycle on potatoes. We developed a mechanistic model (BLIGHTSIM) with an hourly time step to simulate late blight under fluctuating environmental conditions and predict late blight epidemics in potato fields. BLIGHTSIM is a modified susceptible (S), latent (L), infectious (I) and removed (R) compartmental model with hourly temperature and relative humidity as driving variables.

View Article and Find Full Text PDF

The genus includes pathogenic and nonpathogenic species. We report the 5.57-Mb genome sequences of two strains, G18-1365 and G18-1376, isolated from symptomatic plantain plants in Haiti.

View Article and Find Full Text PDF

The study of complex ecological interactions, such as those among host, pathogen, and vector communities, can help to explain host ranges and the emergence of novel pathogens. We evaluated the viromes of papaya orchards, including weed and insect viromes, to identify common viruses in intensive production of papaya in the Pacific Coastal Plain and the Central Depression of Chiapas, Mexico. Samples of papaya cultivar Maradol, susceptible to papaya ringspot virus (PRSV), were categorized by symptoms by local farmers (papaya ringspot symptoms, non-PRSV symptoms, or asymptomatic).

View Article and Find Full Text PDF

Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), an uncultured α-proteobacterium, is the most destructive disease of citrus trees worldwide. In previous studies, trunk injections of penicillin reduced CLas titers and HLB symptoms in citrus. However, antibiotic effects on the whole plant microbial community, which include effects on taxa that interact with CLas, have not yet been addressed.

View Article and Find Full Text PDF

Root-associated microbes are critical to plant health and performance, although understanding of the factors that structure these microbial communities and the theory to predict microbial assemblages are still limited. Here, we use a grafted tomato system to study the effects of rootstock genotypes and grafting in endosphere and rhizosphere microbiomes that were evaluated by sequencing 16S rRNA. We compared the microbiomes of nongrafted tomato cultivar BHN589, self-grafted BHN589, and BHN589 grafted to Maxifort or RST-04-106 hybrid rootstocks.

View Article and Find Full Text PDF

Sustainability of global fisheries is a growing concern. The United Nations has identified three pillars of sustainability: economic development, social development, and environmental protection. The fisheries literature suggests that there are two key trade-offs among these pillars of sustainability.

View Article and Find Full Text PDF

Seedborne pathogens and pests limit production in many agricultural systems. Quarantine programs help prevent the introduction of exotic pathogens into a country, but few regulations directly apply to reducing the reintroduction and spread of endemic pathogens. Use of phytosanitary thresholds helps limit the movement of pathogen inoculum through seed, but the costs associated with rejected seed lots can be prohibitive for voluntary implementation of phytosanitary thresholds.

View Article and Find Full Text PDF

Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons.

View Article and Find Full Text PDF

Including food production in non-food systems, such as rubber plantations and biofuel or bioenergy crops, may contribute to household food security. We evaluated the potential for planting rice, mungbean, rice cultivar mixtures, and rice intercropped with mungbean in young rubber plantations in experiments in the Arakan Valley of Mindanao in the Philippines. Rice mixtures consisted of two- or three-row strips of cultivar Dinorado, a cultivar with higher value but lower yield, and high-yielding cultivar UPL Ri-5.

View Article and Find Full Text PDF

Wheat is at peak quality soon after harvest. Subsequently, diverse biota use wheat as a resource in storage, including insects and mycotoxin-producing fungi. Transportation networks for stored grain are crucial to food security and provide a model system for an analysis of the population structure, evolution, and dispersal of biota in networks.

View Article and Find Full Text PDF