The study of genetics centers on how encoded information in DNA underlies similarities and differences between individuals and how traits are inherited. Genetics topics covered in a wide variety of undergraduate biology classrooms can relate to various identities held by students such as gender identity, disability, and race/ethnicity, among others. An instructor's sensitive approaches and deliberate language choices regarding these topics has the potential to make the critical difference between welcoming or alienating students and can set a tone that communicates to all students the importance of diversity.
View Article and Find Full Text PDFBalancer chromosomes are multiply inverted and rearranged chromosomes used in for many tasks, such as maintaining mutant alleles in stock and complex stock construction. Balancers were created before molecular characterization of their breakpoints was possible, so the precise locations of many of these breakpoints are unknown. Here, we report or confirm the positions of the 14 euchromatic breakpoints on the chromosome balancers , , , and This total includes three breakpoints involved in a complex rearrangement on that is associated with the duplication of two genomic regions.
View Article and Find Full Text PDFBackground: In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure.
Results: The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation.
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions.
View Article and Find Full Text PDFA recent paper in BMC Developmental Biology reports that a mitochondrial iron importer is required for Drosophila male fertility and normal mitochondrial shaping in spermatids. This suggests that mitochondrial morphogenesis during insect spermatogenesis may be a useful new context in which to study iron metabolism. See research article http://www.
View Article and Find Full Text PDFTemporal coordination of meiosis with spermatid morphogenesis is crucial for successful generation of mature sperm cells. We identified a recessive male sterile Drosophila melanogaster mutant, mitoshell, in which events of spermatid morphogenesis are initiated too early, before meiotic onset. Premature mitochondrial aggregation and fusion lead to an aberrant mitochondrial shell around premeiotic nuclei.
View Article and Find Full Text PDFSpermatogenesis uses mitotic and meiotic cell cycles coordinated with growth and differentiation programs to generate functional sperm. Our analysis of a Drosophila mutant has revealed that asunder (asun), which encodes a conserved protein, is an essential regulator of spermatogenesis. asun spermatocytes arrest during prophase of meiosis I.
View Article and Find Full Text PDFFly (Austin)
October 2008
Mitochondria undergo dramatic rearrangement during Drosophila spermatogenesis. In wild type testes, the many small mitochondria present in pre-meiotic spermatocytes later aggregate, fuse, and interwrap in post-meiotic haploid spermatids to form the spherical Nebenkern, whose two giant mitochondrial compartments later unfurl and elongate beside the growing flagellar axoneme. Drp1 encodes a dynamin-related protein whose homologs in many organisms mediate mitochondrial fission and whose Drosophila homolog is known to govern mitochondrial morphology in neurons.
View Article and Find Full Text PDFDuring early development in Drosophila, pseudocleavage furrows in the syncytial embryo prevent contact between neighboring spindles, thereby ensuring proper chromosome segregation. Here we demonstrate that the GTPase Ran regulates pseudocleavage furrow organization. Ran can exert control on pseudocleavage furrows independently of its role in regulating the microtubule cytoskeleton.
View Article and Find Full Text PDFMitochondrial undergo regulated fusion and division in many organisms and cell types, and each event is mediated by a different complex of proteins each containing at least one large GTPase. The mitochondrial fusion and division molecular machinery is in large part conserved; recent studies show a functional connection between some of these proteins and the apoptotic cascade. Mitochondria also undergo directed movement in cells, and the gene products that attach and propel mitochondria along cytoskeletal elements (actin filaments in some organisms, microtubules in others) are becoming gradually elucidated.
View Article and Find Full Text PDFThe septins are a family of proteins involved in cytokinesis and other aspects of cell-cortex organization. In a two-hybrid screen designed to identify septin-interacting proteins in Drosophila, we isolated several genes, including homologues (Dmuba2 and Dmubc9) of yeast UBA2 and UBC9. Yeast Uba2p and Ubc9p are involved in the activation and conjugation, respectively, of the ubiquitin-like protein Smt3p/SUMO, which becomes conjugated to a variety of proteins through this pathway.
View Article and Find Full Text PDF