Premise: Determining how species perform in novel climatic environments is essential for understanding (1) responses to climate change and (2) evolutionary consequences of biological invasions. For the vast majority of species, the number of population characteristics that will predict performance and patterns of natural selection in novel locations in the wild remains limited.
Methods: We evaluated phenological, vegetative, architectural, and fitness-related traits in experimental gardens in contrasting climates (Ontario, Canada, and South Carolina, USA) in the North American non-native distribution of Arabidopsis thaliana.
All species have limited geographic distributions; but the ecological and evolutionary mechanisms causing range limits are largely unknown. That many species' geographic range limits are coincident with niche limits suggests limited evolutionary potential of marginal populations to adapt to conditions experienced beyond the range. We provide a test of range limit theory by combining population genetic analysis of microsatellite polymorphisms with a transplant experiment within, at the edge of, and 60 km beyond the northern range of a coastal dune plant.
View Article and Find Full Text PDFPremise Of The Study: We developed 24 nuclear microsatellite primers from an enriched genomic library for the Pacific coastal dune endemic Camissoniopsis cheiranthifolia to study the consequences of mating system differentiation, the genetics of species' range limits, and hybridization with its closest sister taxon, C. bistorta. •
Methods And Results: Twenty-four primer pairs were developed and characterized in four populations of C.
Many species' range limits (RL) occur across continuous environmental gradients without obvious barriers imposing them. Such RL are expected to reflect niche limits (NL) and thus to occur where populations cease to be self-sustaining. Transplant experiments comparing fitness within and beyond species' ranges can test this hypothesis, but interpretive power depends strongly on experimental design.
View Article and Find Full Text PDFIntroduced species frequently show geographic differentiation, and when differentiation mirrors the ancestral range, it is often taken as evidence of adaptive evolution. The mouse-ear cress (Arabidopsis thaliana) was introduced to North America from Eurasia 150-200 years ago, providing an opportunity to study parallel adaptation in a genetic model organism. Here, we test for clinal variation in flowering time using 199 North American (NA) accessions of A.
View Article and Find Full Text PDFBackground And Aims: Plants vary widely in the extent to which seeds are produced via self-fertilization vs. outcrossing, and evolutionary change in the mating system is thought to be accompanied by genetic differentiation in a syndrome of floral traits. We quantified the pattern of variation and covariation in floral traits and the proportion of seeds outcrossed (t) to better understand the evolutionary processes involved in mating system differentiation among and within populations of the short-lived Pacific coastal dune endemic Camissoniopsis cheiranthifolia across its geographic range in western North America.
View Article and Find Full Text PDFA species is expected to occur where the prevailing biotic and abiotic conditions fall within its fundamental niche. Geographic range limits should, therefore, occur when the survival and fitness of individuals along ecological gradients is reduced to the point at which populations are no longer self-sustaining. Abrupt limits to a species' distribution are expected to reflect abrupt changes in the ecological conditions that cause sharp declines in fitness across the limit.
View Article and Find Full Text PDFUsing seasonal cues to time reproduction appropriately is crucial for many organisms. Plants in particular often use photoperiod to signal the time to transition to flowering. Because seasonality varies latitudinally, adaptation to local climate is expected to result in corresponding clines in photoperiod-related traits.
View Article and Find Full Text PDFDispersal may be favoured at geographic range edges by unstable population and metapopulation dynamics. However, dispersal may also evolve in response to geographic variation in other life-history traits, especially the mating system. Here, increased dispersal at range margins was tested for with a range-wide analysis of seed dispersal and mating system traits in Abronia umbellata, a plant endemic to Pacific coastal dunes of North America.
View Article and Find Full Text PDFIt is widely accepted that species are most abundant at the center of their geographic ranges and become progressively rarer toward range limits. Although the abundant center model (ACM) has rarely been tested with range-wide surveys, it influences much thinking about the ecology and evolution of species' distributions. We tested ACM predictions using two unrelated but ecologically similar plants, Camissonia cheiranthifolia and Abronia umbellata.
View Article and Find Full Text PDF