The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology.
View Article and Find Full Text PDFAs a result of extreme weather conditions, such as heavy precipitation, natural hillslopes can fail dramatically; these slope failures can occur on a dry day, due to time lags between rainfall and pore-water pressure change at depth, or even after days to years of slow motion. While the prefailure deformation is sometimes apparent in retrospect, it remains challenging to predict the sudden transition from gradual deformation (creep) to runaway failure. We use a network science method-multilayer modularity optimization-to investigate the spatiotemporal patterns of deformation in a region near the 2017 Mud Creek, California landslide.
View Article and Find Full Text PDFBoundary shape, particularly roughness, strongly controls the amount of wall slip in dense granular flows. In this paper, we aim to quantify and understand which aspects of a dense granular flow are controlled by the boundary conditions, and to incorporate these observations into a cooperative nonlocal model characterizing slow granular flows. To examine the influence of boundary properties, we perform experiments on a quasi-2D annular shear cell with a rotating inner wall and a fixed outer wall; the latter is selected among 6 walls with various roughnesses, local concavity, and compliance.
View Article and Find Full Text PDFWe report experimental evidence of a Gardner-like crossover from variable to persistent force contacts in a two-dimensional bidisperse granular crystal by analyzing the variability of both particle positions and force networks formed under uniaxial compression. Starting from densities just above the freezing transition and for variable amounts of additional compression, we compare configurations to both their own initial state and to an ensemble of equivalent reinitialized states. This protocol shows that force contacts are largely undetermined when the density is below a Gardner-like crossover, after which they gradually transition to being persistent, being fully so only above the jamming point.
View Article and Find Full Text PDFNonlocal rheologies allow for the modeling of granular flows from the creeping to intermediate flow regimes, using a small number of parameters. In this paper, we report on experiments testing how particle properties affect the model parameters used in the Kamrin & Koval cooperative nonlocal model, using particles of three different shapes (circles, ellipses, and pentagons) and three different materials, including one which allows for the measurement of stresses photoelasticity. Our experiments are performed on a quasi-2D annular shear cell with a rotating inner wall and a fixed outer wall.
View Article and Find Full Text PDFThe mechanical strength and flow of granular materials can depend strongly on the shapes of individual grains. We report quantitative results obtained from photoelasticimetry experiments on locally loaded, quasi-two-dimensional granular packings of either disks or pentagons exhibiting stick-slip dynamics. Packings of pentagons resist the intruder at significantly lower packing fractions than packings of disks, transmitting stresses from the intruder to the boundaries over a smaller spatial extent.
View Article and Find Full Text PDFWe show how rigidity emerges in experiments on sheared two-dimensional frictional granular materials by using generalizations of two methods for identifying rigid structures. Both approaches, the force-based dynamical matrix and the topology-based rigidity percolation, agree with each other and identify similar rigid structures. As the system becomes jammed, at a critical contact number z_{c}=2.
View Article and Find Full Text PDFRipples are common in both biological systems and human clothes. Knitters have long exploited the ability of fabric to curl out of plane, by either removing or adding stitches to the material as it is created. Here, we present two knitting patterns for scarves to illustrate how ripples can arise through such additive processes.
View Article and Find Full Text PDFLiquids typically form droplets when exiting a nozzle. Jets--cylindrical streams of fluid-can form transiently at higher fluid velocities, yet interfacial tension rapidly drives jet breakup into droplets via the Rayleigh-Plateau instability. Liquid metal is an unlikely candidate to form stable jets since it has enormous interfacial tension and low viscosity.
View Article and Find Full Text PDFSoft materials are known to deform due to a variety of mechanisms, including capillarity, buoyancy, and swelling. In this paper, we present experiments on polyvinylsiloxane gel threads partially-immersed in three liquids with different solubility, wettability, and swellability. Our results demonstrate that deformations due to capillarity, buoyancy, and swelling can be of similar magnitude as such threads come to static equilibrium.
View Article and Find Full Text PDFWe report on a series of experiments in which a grain-sized intruder is pushed by a spring through a two-dimensional granular material composed of photoelastic disks in a Couette geometry. We study the intruder dynamics as a function of packing fraction for two types of supporting substrates: A frictional glass plate and a layer of water for which basal friction forces are negligible. We observe two dynamical regimes: Intermittent flow, in which the intruder moves freely most of the time but occasionally gets stuck, and stick-slip dynamics, in which the intruder advances via a sequence of distinct, rapid events.
View Article and Find Full Text PDFWe analyse the rheology of gravity-driven, dry granular flows in experiments where individual forces within the flow bulk are measured. We release photoelastic discs at the top of an incline to create a quasi-static erodible bed over which flows a steady 2D avalanche. The flowing layers we produce are dense (φ ≈ 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
Forecasting fracture locations in a progressively failing disordered structure is of paramount importance when considering structural materials. We explore this issue for gradual deterioration via beam breakage of 2-dimensional (2D) disordered lattices, which we represent as networks, for various values of mean degree. We study experimental samples with geometric structures that we construct based on observed contact networks in 2D granular media.
View Article and Find Full Text PDFMany microbes coexist within biofilms, or multispecies communities of cells encased in an extracellular matrix. However, little is known about the microbe-microbe interactions relevant for creating these structures. In this study, we explored a striking dual-species biofilm between and that exhibited characteristics that were not predictable from previous work examining monoculture biofilms.
View Article and Find Full Text PDFStress-based ensembles incorporating temperaturelike variables have been proposed as a route to an equation of state for granular materials. To test the efficacy of this approach, we perform experiments on a two-dimensional photoelastic granular system under three loading conditions: uniaxial compression, biaxial compression, and simple shear. From the interparticle forces, we find that the distributions of the normal component of the coarse-grained force-moment tensor are exponential tailed, while the deviatoric component is Gaussian distributed.
View Article and Find Full Text PDFA load applied to a jammed frictional granular system will be localized into a network of force chains making inter-particle connections throughout the system. Because such systems are typically under-constrained, the observed force network is not unique to a given particle configuration, but instead varies upon repeated formation. In this paper, we examine the ensemble of force chain configurations created under repeated assembly in order to develop tools to statistically forecast the observed force network.
View Article and Find Full Text PDFGranular materials can fail through spontaneous events like earthquakes or brittle fracture. However, measurements and analytic models which forecast failure in this class of materials, while of both fundamental and practical interest, remain elusive. Materials including numerical packings of spheres, colloidal glasses, and granular materials have been known to develop an excess of low-frequency vibrational modes as the confining pressure is reduced.
View Article and Find Full Text PDFWe perform experiments on an active granular material composed of individually-driven, spinning disks confined within a circular arena. Small bumps at the outer edges of the disks provide a variable amount of interparticle coupling in the form of geometric friction. The disks each spin counter-clockwise, but undergo a transition in their collective circulation around the center of the arena, from a clockwise orbit to a counter-clockwise orbit, as a function of packing fraction φ.
View Article and Find Full Text PDFThe flow of dense granular materials at low inertial numbers cannot be fully characterized by local rheological models; several nonlocal rheologies have recently been developed to address these shortcomings. To test the efficacy of these models across different packing fractions and shear rates, we perform experiments in a quasi-2D annular shear cell with a fixed outer wall and a rotating inner wall, using photoelastic particles. The apparatus is designed to measure both the stress ratio μ (the ratio of shear to normal stress) and the inertial number I through the use of a torque sensor, laser-cut leaf springs, and particle-tracking.
View Article and Find Full Text PDFWe identify and characterize a new class of fingering instabilities in liquid metals; these instabilities are unexpected due to the large interfacial tension of metals. Electrochemical oxidation lowers the effective interfacial tension of a gallium-based liquid metal alloy to values approaching zero, thereby inducing drastic shape changes, including the formation of fractals. The measured fractal dimension (D=1.
View Article and Find Full Text PDFPhotoelastic techniques are used to make both qualitative and quantitative measurements of the forces within idealized granular materials. The method is based on placing a birefringent granular material between a pair of polarizing filters, so that each region of the material rotates the polarization of light according to the amount of local stress. In this review paper, we summarize the past work using the technique, describe the optics underlying the technique, and illustrate how it can be used to quantitatively determine the vector contact forces between particles in a 2D granular system.
View Article and Find Full Text PDFA droplet of surfactant spreading on an ultrasoft (E ≲ 100 Pa) gel substrate will produce capillary fractures at the gel surface; these fractures originate at the contact-line and propagate outwards in a starburst pattern. There is an inherent variability in both the number of fractures formed and the time delay before fractures form. In the regime where single fractures form, we observe a Weibull-like distribution of delay times, consistent with a thermally-activated process.
View Article and Find Full Text PDFAs a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging.
View Article and Find Full Text PDF