In this article, we propose batch-type learning vector quantization (LVQ) segmentation techniques for the magnetic resonance (MR) images. Magnetic resonance imaging (MRI) segmentation is an important technique to differentiate abnormal and normal tissues in MR image data. The proposed LVQ segmentation techniques are compared with the generalized Kohonen's competitive learning (GKCL) methods, which were proposed by Lin et al.
View Article and Find Full Text PDFKohonen's self-organizing map is a two-layer feedforward competitive learning network. It has been used as a competitive learning clustering algorithm. In this paper, we generalize Kohonen's competitive learning (KCL) algorithm with fuzzy and fuzzy-soft types called fuzzy KCL (FKCL) and fuzzy-soft KCL (FSKCL).
View Article and Find Full Text PDFThis paper presents MRI segmentation techniques to differentiate abnormal and normal tissues in Ophthalmology using fuzzy clustering algorithms. Applying the best-known fuzzy c-means (FCM) clustering algorithm, a newly proposed algorithm, called an alternative fuzzy c-mean (AFCM), was used for MRI segmentation in Ophthalmology. These unsupervised segmentation algorithms can help Ophthalmologists to reduce the medical imaging noise effects originating from low resolution sensors and/or the structures that move during the data acquisition.
View Article and Find Full Text PDF