Functional oxide materials have become crucial in the continuous development of various fields, including those for energy applications. In this aspect, the synthesis of nanomaterials for low-cost green hydrogen production represents a huge challenge that needs to be overcome to move toward the next generation of efficient systems and devices. This perspective presents a critical assessment of hydrothermal and polymeric precursor methods as potential approaches to designing photoelectrodes for future industrial implementation.
View Article and Find Full Text PDFA super activated carbon (SAC) was produced by KOH-activation of a biomass waste for paracetamol (PCT) adsorption from aqueous solution and for adsorption-thermal regeneration cycles. The SAC and the regenerated SAC after five adsorption-regeneration cycles (RSAC-5th) were fully characterized by several techniques. The N physisorption showed that the S values of the SAC and RSAC-5th are remarkably different, being 2794 m² g and 889 m² g, respectively.
View Article and Find Full Text PDFThe present work reports the preparation of CO-activated carbon (AC) using Stevia rebaudiana (Bertoni) residue as a new carbon precursor. The experimental parameters were optimized via chemometrics tools to obtain an AC with high BET surface area (S). The found optimum condition was: activation temperature of 900 °C, CO flow of 165 cm g and activation time of 60 min, providing an AC with S of 874 m g.
View Article and Find Full Text PDFThe present work reports the development and application of bismuth-film electrode (BiFE), obtained by in situ method on the pencil-lead graphite surface, for simultaneous Cd(II) and Pb(II) determination at trace levels, as alternative to replace the mercury-film electrodes. Experimental factors, deposition time ( ), deposition potential ( ), and Bi(III) concentration ( ), were investigated by applying a 2 factorial design using 0.10 mol/L acetate buffer solution (pH 4.
View Article and Find Full Text PDF