Objective: To investigate nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity in Madin-Darby canine kidney (MDCK) cells and the production of reactive oxygen species on exposure to oxalate (Ox) or calcium oxalate (CaOx) crystals.
Methods: Monolayers of confluent Madin-Darby canine kidney cells were exposed to 100, 300, 500 μmol, 1 mmol Ox or 33, 66, 132 μg/cm(2) CaOx crystals for 15 minutes, 30 minutes, 1 hour, 2 hours, or 3 hours. After specified periods of exposure to Ox and CaOx crystals, lactate dehydrogenase release, trypan blue exclusion, activation of NADPH oxidase, and superoxide production were determined using standard procedures.
Background: Exposure of renal epithelial cells to oxalate (Ox) or calcium oxalate (CaOx) crystals leads to the production of reactive oxygen species and cell injury. We have hypothesized that Ox and CaOx crystals activate NADPH oxidase through upregulation of its various subunits.
Methods: Human renal epithelial-derived cell line, HK-2, was exposed to 100 μmol Ox or 66.
Since hypercalciuria is a common feature of idiopathic calcium oxalate (CaOx) nephrolithiasis, renal epithelial cells of stone patients are exposed to various crystals in the presence of high calcium. This study was performed to determine the effect of high calcium levels on CaOx crystal-induced cell injury. We exposed human renal epithelial cell line, HK2 in vitro to CaOx monohydrate crystals at a concentration of 133 microg/cm(2) for 1, 3, 6 or 12 h in the presence or absence of 5 or 10 mM/L calcium Ca(++).
View Article and Find Full Text PDFAdhesion forces between the calcium oxalate monohydrate (COM, whewellite) crystal and the layer of the epithelial kidney cells have been directly measured under buffer solutions by using atomic force microscope (AFM). Two renal epithelial lines, MDCK (a collecting duct line) and LLC-PK1 (a proximal tubular line), were used. All experiments were conducted in buffer solutions containing additional Ca(2+) and Mg(2+) ions in the various concentrations.
View Article and Find Full Text PDFPurpose: Kidney stone formation is associated with the deposition of hydroxyapatite as subepithelial plaques or tubular deposits in the renal papillae. We investigated the effect of renal epithelial exposure to hydroxyapatite crystals in vitro to develop an insight into the pathogenesis of kidney stones.
Materials And Methods: NRK52E cells (No.
Purpose: Patients with calcium oxalate kidney stones are advised to decrease the consumption of foods that contain oxalate. We hypothesized that a cutback in dietary oxalate would lead to a decrease in the urinary excretion of oxalate and decreased stone recurrence. We tested the hypothesis in an animal model of calcium oxalate nephrolithiasis.
View Article and Find Full Text PDFObjective: To determine the differences in cell responses to synthetic and biological crystals of calcium oxalate (CaOx) and brushite
Materials And Methods: Nephrolithiasis depends on crystal retention within the kidneys, often promoted by crystal attachment to the injured renal epithelium; studies often use various crystals that might be injurious to cells and cause the exposure of crystal binding molecules on cell surfaces, thus promoting crystal attachment and retention. The synthetic crystals used in these studies might be more injurious than the biological crystals naturally produced in the kidneys and that form kidney stones. We exposed the renal epithelial cell line NRK 52E in vitro to CaOx or brushite crystals at 67 or 133 microg/cm(2) for 3 or 6 h.
AFM interaction force measurements have been performed between calcium oxalate monohydrate crystal (COM) colloidal probes and monolayers of renal epithelial cells (on a polymer substrate) in artificial urine (AU) solutions. The adhesion force was measured for the COM/MDCK cell interaction, while no adhesion force was found for the COM/LLC-PK(1) cell interaction. Long-range repulsive forces for both lines of cells were measured in the range of 2-3 mum.
View Article and Find Full Text PDFUnder severe hyperoxaluric conditions calcium oxalate crystals often deposit in the renal interstitium and produce localized inflammation. We have proposed that renal epithelial cells exposed to CaOx crystals produce chemoattractants such as monocyte chemoattractant protein-1 (MCP-1). MCP-1 synthesis is mediated by reactive oxygen species (ROS).
View Article and Find Full Text PDFFree radical formation plays a major role in shock wave lithotripsy induced renal damage. Moreover, previous studies suggest that free radicals may also promote de novo calcium oxalate crystallization of previously damaged urothelium. Citrate is a known inhibitor of renal stone formation and has also been used as a free radical scavenger.
View Article and Find Full Text PDFOxalate is a toxic end product of metabolism largely because of its propensity to crystallize and form calcium oxalate, which is insoluble at physiologic pH and often deposits at very unfortunate sites, notably the kidneys. In the current study, we investigated the oxalate-induced injury and up-regulation of monocyte-chemoattractant protein-1 (MCP-1) in HK-2 cells, a proximal tubular epithelial cell line derived from normal human kidney. The cells were exposed to oxalate ions for different lengths of time.
View Article and Find Full Text PDFBackground: Our earlier studies have demonstrated upregulation of monocyte chemoattractant protein-1 (MCP-1) in NRK52E rat renal epithelial cells by exposure to oxalate (Ox) ions and crystals of calcium oxalate monohydrate (COM) or the brushite (Br) form of calcium phosphate. The upregulation was mediated by reactive oxygen species (ROS). This study was performed to investigate whether NADPH oxidase is involved in ROS production.
View Article and Find Full Text PDFPurpose: Oxalate and calcium oxalate (CaOx) crystals are injurious to renal epithelial cells. The injury is caused by the production of reactive oxygen species (ROS). Citrate is a well-known inhibitor of CaOx crystallization and as such it is one of the major therapeutic agents prescribed.
View Article and Find Full Text PDFBackground: Crystal formation and retention are critical events for the formation of kidney stones. Oxalate and calcium oxalate (CaOx) crystals are injurious to renal epithelium, and membranes of injured cells promote crystal adherence and retention. Calcium phosphate (CaP) is the most common crystal in both urine and stones, most likely to form in the early segments of the nephron and can nucleate CaOx in a metastable solution.
View Article and Find Full Text PDF