The cerebellum is important for motor adaptation. Lesions to the vestibulo-cerebellum selectively cause gait ataxia. Here we investigate how such damage affects locomotor adaptation when performing the 'broken escalator' paradigm.
View Article and Find Full Text PDFRehabilitative interventions involving electrical stimulation show promise for neuroplastic recovery in people living with Spinal Cord Injury (SCI). However, the understanding of how stimulation interacts with descending and spinal excitability remain unclear. In this study we compared the immediate and short-term (within a few minutes) effects of pairing Transcranial Magnetic Stimulation (TMS) with transcutaneous Spinal Cord stimulation (tSCS) and Peripheral Nerve Stimulation (PNS) on Corticospinal excitability in healthy subjects.
View Article and Find Full Text PDFBackground: Although vestibular lesions degrade postural control we do not know the relative contributions of the magnitude of the vestibular loss and subjective vestibular symptoms to locomotor adaptation.
Objective: To study how dizzy symptoms interfere with adaptive locomotor learning.
Methods: We examined patients with contrasting peripheral vestibular deficits, vestibular neuritis in the chronic stable phase (n = 20) and strongly symptomatic unilateral Meniere's disease (n = 15), compared to age-matched healthy controls (n = 15).
Background: Paired corticospinal-motoneuronal stimulation (PCMS) increases corticospinal transmission in humans with chronic incomplete spinal cord injury (SCI).
Objective/hypothesis: Here, we examine whether increases in the excitability of spinal motoneurons, by performing voluntary activity, could potentiate PCMS effects on corticospinal transmission.
Methods: During PCMS, we used 100 pairs of stimuli where corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the hand representation of the primary motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle ∼1-2 ms before antidromic potentials were elicited in motoneurons by electrical stimulation of the ulnar nerve.
J Cogn Neurosci
December 2016
It has been proposed that motor system activity during action observation may be modulated by the kinematics of observed actions. One purpose of this activity during action observation may be to predict the visual consequence of another person's action based on their movement kinematics. Here, we tested the hypothesis that the primary motor cortex (M1) may have a causal role in inferring information that is present in the kinematics of observed actions.
View Article and Find Full Text PDFMotor resonance is the modulation of M1 corticospinal excitability induced by observation of others' actions. Recent brain imaging studies have revealed that viewing videos of grasping actions led to a differential activation of the ventral premotor cortex depending on whether the entire person is viewed versus only their disembodied hand. Here we used transcranial magnetic stimulation (TMS) to examine motor evoked potentials (MEPs) in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) during observation of videos or static images in which a whole person or merely the hand was seen reaching and grasping a peanut (precision grip) or an apple (whole hand grasp).
View Article and Find Full Text PDFObserving the motor actions of another person could facilitate compensatory motor behavior in the passive observer. Here we explored whether action observation alone can induce automatic locomotor adaptation in humans. To explore this possibility, we used the "broken escalator" paradigm.
View Article and Find Full Text PDFThe motor cortex and the corticospinal system contribute to the control of a precision grip between the thumb and index finger. The involvement of subcortical pathways during human precision grip remains unclear. Using noninvasive cortical and cervicomedullary stimulation, we examined motor evoked potentials (MEPs) and the activity in intracortical and subcortical pathways targeting an intrinsic hand muscle when grasping a small (6 mm) cylinder between the thumb and index finger and during index finger abduction in uninjured humans and in patients with subcortical damage due to incomplete cervical spinal cord injury (SCI).
View Article and Find Full Text PDFCrossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls.
View Article and Find Full Text PDFBaclofen is a GABAB receptor agonist commonly used to relief spasticity related to motor disorders. The effects of baclofen on voluntary motor output are limited and not yet understood. Using noninvasive transcranial magnetic and electrical stimulation techniques, we examined electrophysiological measures probably involving GABAB (long-interval intracortical inhibition and the cortical silent period) and GABAA (short-interval intracortical inhibition) receptors, which are inhibitory effects mediated by subcortical and cortical mechanisms.
View Article and Find Full Text PDFThe corticospinal tract is an important target for motor recovery after spinal cord injury (SCI) in animals and humans. Voluntary motor output depends on the efficacy of synapses between corticospinal axons and spinal motoneurons, which can be modulated by the precise timing of neuronal spikes. Using noninvasive techniques, we developed tailored protocols for precise timing of the arrival of descending and peripheral volleys at corticospinal-motoneuronal synapses of an intrinsic finger muscle in humans with chronic incomplete SCI.
View Article and Find Full Text PDFIn uninjured humans, it is well established that voluntary contraction of muscles on one side of the body can facilitate transmission in the contralateral corticospinal pathway. This crossed facilitatory effect may favor interlimb coordination and motor performance. Whether this aspect of corticospinal function is preserved after chronic spinal cord injury (SCI) is unknown.
View Article and Find Full Text PDFWe studied 12 peripheral neuropathy patients (PNP) and 13 age-matched controls with the "broken escalator" paradigm to see how somatosensory loss affects gait adaptation and the release and recovery ("braking") of the forward trunk overshoot observed during this locomotor aftereffect. Trunk displacement, foot contact signals, and leg electromyograms (EMGs) were recorded while subjects walked onto a stationary sled (BEFORE trials), onto the moving sled (MOVING or adaptation trials), and again onto the stationary sled (AFTER trials). PNP were unsteady during the MOVING trials, but this progressively improved, indicating some adaptation.
View Article and Find Full Text PDFGait adaptation is crucial for coping with varying terrain and biological needs. It is also important that any acquired adaptation is expressed only in the appropriate context. Here we review a recent series of experiments that demonstrate inappropriate expression of gait adaptation.
View Article and Find Full Text PDFAfter walking onto a moving platform subjects experience a locomotor aftereffect (LAE), including a self-generated stumble, when walking again onto a stationary platform. Thus this LAE affords examination of the role of vestibular input during an internally generated postural challenge. The experiments involved walking onto the stationary sled (BEFORE trials), walking onto the moving sled (MOVING), and a second set of stationary trials (AFTER).
View Article and Find Full Text PDF