Introduction: Communities of Practice (CoP) were created to up-skill educators and to mitigate the disruption to physical therapist assistant (PTA) education because of the COVID-19 pandemic. Understanding CoP involves considering individuals and their interactions, making this project significant for pioneering CoP among PTA educators, and using social network analysis (SNA). The research question for this mixed-methods concurrent triangulation study was "To what extent did the network structure of virtual CoP reflect PTA educators' perceptions of participation and mentorship?"
Subjects: Forty of 60 CoP members participated in this study.
Light triggers an enhancement of global translation during photomorphogenesis in Arabidopsis, but little is known about the underlying mechanisms. The phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) at a conserved serine residue in the N-terminus has been shown as an important mechanism for the regulation of protein synthesis in mammalian and yeast cells. However, whether the phosphorylation of this residue in plant eIF2α plays a role in regulation of translation remains elusive.
View Article and Find Full Text PDFSuccessful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance.
View Article and Find Full Text PDFThe various combinations and regulations of different subunits of phosphatase PP2A holoenzymes underlie their functional complexity and importance. However, molecular mechanisms governing the assembly of PP2A complex in response to external or internal signals remain largely unknown, especially in Arabidopsis thaliana. We found that the phosphorylation status of Bβ of PP2A acts as a switch to regulate the activity of PP2A.
View Article and Find Full Text PDFPlants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants.
View Article and Find Full Text PDFThe plant-specific translation initiation complex eIFiso4F is encoded by three genes in Arabidopsis ()-genes encoding the cap binding protein eIFiso4E () and two isoforms of the large subunit scaffolding protein eIFiso4G ( and ). To quantitate phenotypic changes, a phenomics platform was used to grow wild-type and mutant plants (, , , , and []) under various light conditions. Mutants lacking both eIFiso4G isoforms showed the most obvious phenotypic differences from the wild type.
View Article and Find Full Text PDFIn many eukaryotes, translation initiation is regulated by proteins that bind to the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E). These proteins commonly prevent association of eIF4E with eIF4G or form repressive messenger ribonucleoproteins that exclude the translation machinery. Such gene-regulatory mechanisms in plants, and even the presence of eIF4E-interacting proteins other than eIF4G (and the plant-specific isoform eIFiso4G, which binds eIFiso4E), are unknown.
View Article and Find Full Text PDFTranslation (Austin)
November 2016
The use of fluorescent proteins fused to other proteins has been very useful in revealing the location and function of many proteins. However, it is very important to show that the fusion of these reporter proteins does not impact the function of the protein of interest. Plants have 2 forms of the cap-binding protein that function in initiation of translation, eIF4E and a plant specific form, eIFiso4E.
View Article and Find Full Text PDFWe recently identified a remarkably strong (739 nt-long) IRES-like element in the 5' untranslated region (UTR) of Triticum mosaic virus (TriMV, Potyviridae). Here, we define the components of the cap-binding translation initiation complex that are required for TriMV translation. Using bio-layer interferometry and affinity capture of the native translation apparatus, we reveal that the viral translation element has a ten-fold greater affinity for the large subunit eIF4G/eIFiso4G than to the cap binding protein eIF4E/eIFiso4E.
View Article and Find Full Text PDFEukaryotic initiation factor 4A (eIF4A) is a highly conserved RNA-stimulated ATPase and helicase involved in the initiation of messenger RNA translation. Previously, we found that eIF4A interacts with cyclin-dependent kinase A (CDKA), the plant ortholog of mammalian CDK1. Here, we show that this interaction occurs only in proliferating cells where the two proteins coassociate with 5'-cap-binding protein complexes, eIF4F or the plant-specific eIFiso4F.
View Article and Find Full Text PDFUnlabelled: Several plant viruses encode elements at the 5' end of their RNAs, which, unlike most cellular mRNAs, can initiate translation in the absence of a 5' m7GpppG cap. Here, we describe an exceptionally long (739-nucleotide [nt]) leader sequence in triticum mosaic virus (TriMV), a recently emerged wheat pathogen that belongs to the Potyviridae family of positive-strand RNA viruses. We demonstrate that the TriMV 5' leader drives strong cap-independent translation in both wheat germ extract and oat protoplasts through a novel, noncanonical translation mechanism.
View Article and Find Full Text PDFProtein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination.
View Article and Find Full Text PDFCanonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome 1, EIF4E1B (At1g29550) and EIF4E1C (At1g29590).
View Article and Find Full Text PDFWe report the structural analysis of cap-binding proteins using a chemical probe/ultraviolet photodissociation (UVPD) mass spectrometry strategy for evaluating solvent accessibility of proteins. Our methodology utilized a chromogenic probe (NN) to probe the exposed amine residues of wheat eukaryotic translation initiation factor 4E (eIF4E), eIF4E in complex with a fragment of eIF4G ("mini-eIF4F"), eIF4E in complex with full length eIF4G, and the plant specific cap-binding protein, eIFiso4E. Structural changes of eIF4E in the absence and presence of excess dithiothreitol and in complex with a fragment of eIF4G or full-length eIF4G are mapped.
View Article and Find Full Text PDFObjective: Clinical trials support the efficacy and safety of magnesium sulfate for cerebral palsy prevention. We evaluated the implementation of a clinical protocol for the use of magnesium for cerebral palsy prevention in our large women's hospital, focusing on uptake, indications, and safety.
Methods: We performed a review of selected gravidas with threatened or planned delivery before 32 weeks of gestation from October 2007 to February 2011.
Certain plus-strand RNA plant viruses that are uncapped and nonpolyadenylated rely on RNA elements in their 3' untranslated region, termed 3'-cap-independent translational enhancers (3'CITEs), for efficient translation of their proteins. Here, we have investigated the properties of the Y-shaped class of 3'CITE present in the tombusvirus Carnation Italian ringspot virus (CIRV). While some types of 3'CITE have been found to function through recruitment of translation initiation factors to the viral genome, no trans-acting translation-related factors have yet been identified for the Y-shaped 3'CITE.
View Article and Find Full Text PDFComp Funct Genomics
August 2012
Translation initiation in eukaryotes requires a number of initiation factors to recruit the assembled ribosome to mRNA. The eIF4F complex plays a key role in initiation and is a common target point for regulation of protein synthesis. Most work on the translation machinery of plants to date has focused on flowering plants, which have both the eIF4F complex (eIF4E and eIF4G) as well as the plant-specific eIFiso4F complex (eIFiso4E and eIFiso4G).
View Article and Find Full Text PDFA protein's surface influences its role in protein-protein interactions and protein-ligand binding. Mass spectrometry can be used to give low resolution structural information about protein surfaces and conformations when used in combination with derivatization methods that target surface accessible amino acid residues. However, pinpointing the resulting modified peptides upon enzymatic digestion of the surface-modified protein is challenging because of the complexity of the peptide mixture and low abundance of modified peptides.
View Article and Find Full Text PDFThe initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA.
View Article and Find Full Text PDFThe phytochrome family of sensory photoreceptors interacts with phytochrome interacting factors (PIFs), repressors of photomorphogenesis, in response to environmental light signals and induces rapid phosphorylation and degradation of PIFs to promote photomorphogenesis. However, the kinase that phosphorylates PIFs is still unknown. Here we show that CK2 directly phosphorylates PIF1 at multiple sites.
View Article and Find Full Text PDFArabidopsis thaliana knockout lines for the plant-specific eukaryotic translation initiation factors eIFiso4G1 (i4g1) and eIFiso4G2 (i4g2) genes have been obtained. To address the potential for functional redundancy of these genes, homozygous double mutant lines were generated by crossing individual knockout lines. Both single and double mutant plants were analyzed for changes in gross morphology, development, and responses to selected environmental stressors.
View Article and Find Full Text PDFCK2 phosphorylates a wide variety of substrates, including translation initiation factors. A mass spectrometric approach was used to identify residues phosphorylated by CK2, which may regulate the activity of initiation factors during the translation initiation process in plants. CK2 in vitro phosphorylation sites were identified in wheat and Arabidopsis thaliana eIF2alpha, eIF2beta, eIF5, and wheat eIF3c.
View Article and Find Full Text PDFA previously described wheat germ protein kinase (Yan, T. F., and Tao, M.
View Article and Find Full Text PDFEukaryotic initiation factor (eIF) 4B is known to interact with multiple initiation factors, mRNA, rRNA, and poly(A) binding protein (PABP). To gain a better understanding of the function of eIF4B, the two isoforms from Arabidopsis (Arabidopsis thaliana) were expressed and analyzed using biophysical and biochemical methods. Plant eIF4B was found by ultracentrifugation and light scattering analysis to most likely be a monomer with an extended structure.
View Article and Find Full Text PDF