Globally, wetlands are in decline due to anthropogenic modification and climate change. Knowledge about the spatial distribution of biodiversity and biological processes within wetlands provides essential baseline data for predicting and mitigating the effects of present and future environmental change on these critical ecosystems. To explore the potential for environmental DNA (eDNA) to provide such insights, we used 16S rRNA metabarcoding to characterise prokaryote communities and predict the distribution of prokaryote metabolic pathways in peats and sediments up to 4m below the surface across seven New Zealand wetlands.
View Article and Find Full Text PDFFunctional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population-level analogous above- and belowground traits related to resource acquisition, i.
View Article and Find Full Text PDFWE PERFORM THE FIRST MULTIDISCIPLINARY STUDY OF PARASITES FROM AN EXTINCT MEGAFAUNAL CLADE USING COPROLITES FROM THE NEW ZEALAND MOA (AVES: Dinornithiformes). Ancient DNA and microscopic analyses of 84 coprolites deposited by four moa species (South Island giant moa, Dinornis robustus; little bush moa, Anomalopteryx didiformis; heavy-footed moa, Pachyornis elephantopus; and upland moa, Megalapteryx didinus) reveal an array of gastrointestinal parasites including coccidians (Cryptosporidium and members of the suborder Eimeriorina), nematodes (Heterakoidea, Trichostrongylidae, Trichinellidae) and a trematode (Echinostomida). Parasite eggs were most prevalent and diverse in coprolites from lowland sites, where multiple sympatric moa species occurred and host density was therefore probably higher.
View Article and Find Full Text PDFWhile several studies have shown that invasive plant effects on soil biota influence subsequent plant performance, corresponding studies on how invasive animals affect plants through influencing soil biota are lacking. This is despite the fact that invasive animals often indirectly alter the below-ground subsystem. We studied 18 offshore islands in northern New Zealand, half of which have been invaded by rats that are predators of seabirds and severely reduce their densities, and half of which remain non-invaded; invasion of rats thwarts seabird transfer of resources from ocean to land.
View Article and Find Full Text PDFDespite recent interest in the ecosystem impacts of invasive aboveground organisms, most work in this area has focused on effects of invasive plants, and the effects of invasive herbivores and predators remain poorly understood. We studied 18 forested, offshore islands in northern New Zealand. Nine of these host high densities of burrowing seabirds that serve as ecosystem drivers by transporting nutrients from the ocean to land.
View Article and Find Full Text PDFThere has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread.
View Article and Find Full Text PDFPredators often exert multi-trophic cascading effects in terrestrial ecosystems. However, how such predation may indirectly impact interactions between above- and below-ground biota is poorly understood, despite the functional importance of these interactions. Comparison of rat-free and rat-invaded offshore islands in New Zealand revealed that predation of seabirds by introduced rats reduced forest soil fertility by disrupting sea-to-land nutrient transport by seabirds, and that fertility reduction in turn led to wide-ranging cascading effects on belowground organisms and the ecosystem processes they drive.
View Article and Find Full Text PDFAlthough island attributes such as size and accessibility to colonizing organisms can influence community structure, the consequences of these for ecosystem functioning are little understood. A study of the suspended soils of spatially discrete epiphytes or treetop "islands" in the canopies of New Zealand rainforest trees revealed that different components of the decomposer community responded either positively or negatively to island size, as well as to the tree species that the islands occurred in. This in turn led to important differences between islands in the rates of ecosystem processes driven by the decomposer biota.
View Article and Find Full Text PDF