Chronic inflammation contributes to the prevalence of cardiovascular disease in people living with HIV (PLWH). The immune mechanisms driving atherosclerosis progression in PLWH remain unclear. This study conducted comprehensive assessments of medium-sized coronary arteries and aorta from deceased PLWH and controls without HIV using DNA/RNA assays, spatial transcriptomics, and high-resolution mass spectrometry.
View Article and Find Full Text PDFWhile diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies.
View Article and Find Full Text PDFBackground: Plasma bedaquiline clearance is reportedly more rapid with African ancestry. Our objective was to determine whether genetic polymorphisms explained between-individual variability in plasma clearance of bedaquiline, its M2 metabolite, and clofazimine in a cohort of patients treated for drug-resistant tuberculosis in South Africa.
Methods: Plasma clearance was estimated with nonlinear mixed-effects modeling.
Background: Limited accessibility to intestinal epithelial tissue in wild animals and humans makes it challenging to study patterns of intestinal gene regulation, and hence to monitor physiological status and health in field conditions. To explore solutions to this limitation, we have used a noninvasive approach via fecal RNA-seq, for the quantification of gene expression markers in gastrointestinal cells of free-range primates and a forager human population. Thus, a combination of poly(A) mRNA enrichment and rRNA depletion methods was used in tandem with RNA-seq to quantify and compare gastrointestinal gene expression patterns in fecal samples of wild Gorilla gorilla gorilla (n = 9) and BaAka hunter-gatherers (n = 10) from The Dzanga Sangha Protected Areas, Central African Republic.
View Article and Find Full Text PDFThe ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO). To investigate the cellular and genetic basis of diatom NO assimilation, we generated a knockout in the nitrate reductase gene (-KO) of the model pennate diatom In -KO cells, N-assimilation was abolished although NO transport remained intact. Unassimilated NO accumulated in -KO cells, resulting in swelling and associated changes in biochemical composition and physiology.
View Article and Find Full Text PDFChronic liver disease with cirrhosis is the 12th leading cause of death in the United States, and alcoholic liver disease accounts for approximately half of all cirrhosis deaths. Chronic alcohol consumption is associated with intestinal bacterial dysbiosis, yet we understand little about the contribution of intestinal fungi, or mycobiota, to alcoholic liver disease. Here we have demonstrated that chronic alcohol administration increases mycobiota populations and translocation of fungal β-glucan into systemic circulation in mice.
View Article and Find Full Text PDFInsertion sequence (IS) elements are found throughout bacterial genomes and contribute to genome variation by interrupting genes or altering gene expression. Few of the more than 30 IS elements described in have been characterized for transposition activity or expression effects. A targeted sequencing method, IS-seq, was developed to efficiently map the locations of new insertion events in genomes and was used to identify novel IS sites following growth in the presence of hydrogen peroxide, which causes oxidative stress.
View Article and Find Full Text PDFDiatoms are eukaryotic microalgae that contain genes from various sources, including bacteria and the secondary endosymbiotic host. Due to this unique combination of genes, diatoms are taxonomically and functionally distinct from other algae and vascular plants and confer novel metabolic capabilities. Based on the genome annotation, we performed a genome-scale metabolic network reconstruction for the marine diatom Phaeodactylum tricornutum.
View Article and Find Full Text PDFEukaryotic microalgae hold great promise for the bioproduction of fuels and higher value chemicals. However, compared with model genetic organisms such as Escherichia coli and Saccharomyces cerevisiae, characterization of the complex biology and biochemistry of algae and strain improvement has been hampered by the inefficient genetic tools. To date, many algal species are transformable only via particle bombardment, and the introduced DNA is integrated randomly into the nuclear genome.
View Article and Find Full Text PDFDiatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption.
View Article and Find Full Text PDFEnterohemorrhagic Escherichia coli (EHEC), particularly serotype O157:H7, causes hemorrhagic colitis, hemolytic uremic syndrome, and even death. In vitro studies showed that Shiga toxin 2 (Stx2), the primary virulence factor expressed by EDL933 (an O157:H7 strain), is encoded by the 933W prophage. And the bacterial subpopulation in which the 933W prophage is induced is the producer of Stx2.
View Article and Find Full Text PDFLipoteichoic acid (LTA), a glycerol phosphate polymer, is a component of the envelope of Gram-positive bacteria that has hitherto not been identified in Bacillus anthracis, the causative agent of anthrax. LTA synthesis in Staphylococcus aureus and other microbes is catalyzed by the product of the ltaS gene, a membrane protein that polymerizes polyglycerol phosphate from phosphatidyl glycerol. Here we identified four ltaS homologues, designated ltaS1 to -4, in the genome of Bacillus anthracis.
View Article and Find Full Text PDFBacteria in their struggle for survival have evolved or acquired defences against attacking phage. However, phage often contribute to this defence through mechanisms in which a prophage protects the bacterial population from attack by another, often unrelated, phage. The 933W prophage, which carries Shiga toxin genes that enhance pathogenicity of enterohaemorrhagic Escherichia coli strain O157:H7, also carries the stk gene encoding a eukaryotic-like tyrosine kinase that excludes (aborts) infection by phage HK97.
View Article and Find Full Text PDFThe reason(s) for glucose sensitivity in certain cyanobacterial strains is poorly understood. Inactivation of genes encoding the putative sensor kinase Hik31 in Synechocystis sp. strain PCC 6803 resulted in a mutant unable to grow in the presence of D-glucose.
View Article and Find Full Text PDFThe reasons for annual variability in the composition of phytoplankton assemblages are poorly understood but may include competition for resources and allelopathic interactions. We show that domination by the patch-forming dinoflagellate, Peridinium gatunense, or, alternatively, a bloom of a toxic cyanobacterium, Microcystis sp., in the Sea of Galilee may be accounted for by mutual density-dependent allelopathic interactions.
View Article and Find Full Text PDF