Research on medicinal plants is essential for their conservation, propagation, resistance to environmental stress, and domestication. The use of organic nutrition has been demonstrated to improve soil fertility and plant quality. It is also important to study the effects of the Basic Cation Saturation Ratio (BCSR) approach, which is a topic where there is currently controversy and limited scientific information.
View Article and Find Full Text PDFIn this research, the mathematical model associated with the hydrothermal dehydration process of Nixtamalized Corn Grains (NCG) with different Steeping Time (ST) values, allows the fitting of experimental data with initial moisture M0 and the equilibrium moisture ME as a function of Isothermal Dehydration Time (IDT). The moisture percentage for any time t and dehydration rate (isolines M(t) and isolines vI respectively) of the NCG is shown by means of matrix graphics as a simultaneous function of IDT and ST. The relationship between initial dehydration rate v0 and initial moisture M0 establishes as a function of ST.
View Article and Find Full Text PDFElectroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)-System Identification (SI) process.
View Article and Find Full Text PDFThe Artificial Neural Network (ANN) concept is familiar in methods whose task is, for example, the identification or approximation of the outputs of complex systems difficult to model. In general, the objective is to determine online the adequate parameters to reach a better point-to-point convergence rate, so that this paper presents the parameter estimation for an equivalent ANN (EANN), obtaining a recursive identification for a stochastic system, firstly, with constant parameters and, secondly, with nonstationary output system conditions. Therefore, in the last estimation, the parameters also have stochastic properties, making the traditional approximation methods not adequate due to their losing of convergence rate.
View Article and Find Full Text PDFA model of an Equivalent Artificial Neural Net (EANN) describes the gains set, viewed as parameters in a layer, and this consideration is a reproducible process, applicable to a neuron in a neural net (NN). The EANN helps to estimate the NN gains or parameters, so we propose two methods to determine them. The first considers a fuzzy inference combined with the traditional Kalman filter, obtaining the equivalent model and estimating in a fuzzy sense the gains matrix A and the proper gain K into the traditional filter identification.
View Article and Find Full Text PDF