Publications by authors named "Karen Abbott"

AbstractInducible defenses can affect the persistence, structure, and stability of consumer-resource systems. Theory shows that these effects depend on characteristics of the inducible defense, including timing, costs, efficacy, and sensitivity to consumer density. However, the expression and costs of inducible defenses often vary among life stages, which has not been captured in previous unstructured models.

View Article and Find Full Text PDF

Traditionally, mathematical models in ecology placed an emphasis on asymptotic, long-term dynamics. However, a large number of recent studies highlighted the importance of transient dynamics in ecological and eco-evolutionary systems, in particular 'long transients' that can last for hundreds of generations or even longer. Many models as well as empirical studies indicated that a system can function for a long time in a certain state or regime (a 'metastable regime') but later exhibits an abrupt transition to another regime not preceded by any parameter change (or following the change that occurred long before the transition).

View Article and Find Full Text PDF

AbstractPeriodical cicadas live 13 or 17 years underground as nymphs, then emerge in synchrony as adults to reproduce. Developmentally synchronized populations called broods rarely coexist, with one dominant brood locally excluding those that emerge in off years. Twelve modern 17-year cicada broods are believed to have descended from only three ancestral broods following the last glaciation.

View Article and Find Full Text PDF

Understanding and predicting ecological dynamics in the presence of noise remains a substantial and important challenge. This is particularly true in light of the poor quality of much ecological data and the imprecision of many ecological models. As a first approach to this problem, we focus here on a simple system expressed as a discrete time model with 2-cycle behavior, reflecting alternating high and low population sizes.

View Article and Find Full Text PDF

Diverse carbohydrate (glycan) structures are located on lipids and proteins that cover the surface of human cells known as the glycocalyx. Research over many decades have illustrated that the glycan structures located in the glycocalyx change dramatically with cancer contributing to the early development and progression of tumors. New therapeutic and diagnostic applications for cancers based on targeting glycan changes are now in development and in early stage clinical trials.

View Article and Find Full Text PDF

AbstractIn "The Effects of Plant Compensatory Regrowth and Induced Resistance on Herbivore Population Dynamics," which appeared in in 2016, Stieha et al. argued that overcompensatory regrowth of plant tissues lost to herbivory ("overcompensation") promotes cyclic herbivore outbreaks. In contrast, they concluded that partial regrowth ("tolerance") stabilizes herbivore dynamics, preventing outbreaks.

View Article and Find Full Text PDF

The production of costly public goods (as distinct from metabolic byproducts) has largely been understood through the realization that spatial structure can minimize losses to non-producing "cheaters" by allowing for the positive assortment of producers. In well-mixed systems, where positive assortment is not possible, the stable production of public goods has been proposed to depend on lineages that become indispensable as the sole producers of those goods while their neighbors lose production capacity through genome streamlining (the Black Queen Hypothesis). Here, we develop consumer-resource models motivated by nitrogen-fixing, siderophore-producing bacteria that consider the role of colimitation in shaping eco-evolutionary dynamics.

View Article and Find Full Text PDF

Studies of oscillatory populations have a long history in ecology. A first-principles understanding of these dynamics can provide insights into causes of population regulation and help with selecting detailed predictive models. A particularly difficult challenge is determining the relative role of deterministic versus stochastic forces in producing oscillations.

View Article and Find Full Text PDF

Many social groups are made up of complex social networks in which each individual associates with a distinct subset of its groupmates. If social groups become larger over time, competition often leads to a permanent group fission. During such fissions, complex social networks present a collective decision problem and a multidimensional optimization problem: it is advantageous for each individual to remain with their closest allies after a fission, but impossible for every individual to do so.

View Article and Find Full Text PDF

Microbiomes have profound effects on host fitness, yet we struggle to understand the implications for host ecology. Microbiome influence on host ecology has been investigated using two independent frameworks. Classical ecological theory powerfully represents mechanistic interactions predicting environmental dependence of microbiome effects on host ecology, but these models are notoriously difficult to evaluate empirically.

View Article and Find Full Text PDF

There is a growing recognition that ecological systems can spend extended periods of time far away from an asymptotic state, and that ecological understanding will therefore require a deeper appreciation for how long ecological transients arise. Recent work has defined classes of deterministic mechanisms that can lead to long transients. Given the ubiquity of stochasticity in ecological systems, a similar systematic treatment of transients that includes the influence of stochasticity is important.

View Article and Find Full Text PDF

AbstractEarly warning signals (EWSs) have the potential to predict tipping points where catastrophic changes occur in ecological systems. However, EWSs are plagued by false negatives, leading to undetected catastrophes. One reason may be because EWSs do not occur equally for all species in a system, so whether and how strongly EWSs are detected depends on which species is being observed.

View Article and Find Full Text PDF

Periodical cicadas, Magicicada spp., are a useful model system for understanding the population processes that influence range boundaries. Unlike most insects, these species typically exist at very high densities (occasionally >1000/ m) and have unusually long life-spans (13 or 17 years).

View Article and Find Full Text PDF

The underlying biological processes that govern many ecological systems can create very long periods of transient dynamics. It is often difficult or impossible to distinguish this transient behaviour from similar dynamics that would persist indefinitely. In some cases, a shift from the transient to the long-term, stable dynamics may occur in the absence of any exogenous forces.

View Article and Find Full Text PDF

Long-range synchrony from short-range interactions is a familiar pattern in biological and physical systems, many of which share a common set of 'universal' properties at the point of synchronization. Common biological systems of coupled oscillators have been shown to be members of the Ising universality class, meaning that the very simple Ising model replicates certain spatial statistics of these systems at stationarity. This observation is useful because it reveals which aspects of spatial pattern arise independently of the details governing local dynamics, resulting in both deeper understanding of and a simpler baseline model for biological synchrony.

View Article and Find Full Text PDF

Alternate bearing, seen in many types of plants, is the variable yield with a strongly biennial pattern. In this paper, we introduce a new model for alternate bearing behavior. Similar to the well-known Resource Budget Model, our model is based on the balance between photosynthesis or other limiting resource accumulation and reproduction processes.

View Article and Find Full Text PDF

Stem cells divide and undergo self-renewal depending on the signals received from the stem cell niche. This phenomenon is indispensable to maintain tissues and organs in individuals. However, not all the molecular factors and mechanisms of self-renewal are known.

View Article and Find Full Text PDF

The gene encodes for a multiple pass membrane protein localized in the Golgi that has been linked to congenital disorders of glycosylation. The TMEM165 protein is a putative ion transporter that regulates H/Ca/Mn homeostasis and pH in the Golgi. Previously, we identified TMEM165 as a potential biomarker for breast carcinoma in a glycoproteomic study using late stage invasive ductal carcinoma tissues with patient- matched adjacent normal tissues.

View Article and Find Full Text PDF

The potential for either pathogens or mutualists to alter the outcome of interactions between host species has been clearly demonstrated experimentally, but our understanding of their joint influence remains limited. Individually, pathogens and mutualists can each stabilize (via negative feedback) or destabilize (via positive feedback) host-host interactions. When pathogens and mutualists are both present, the potential for simultaneous positive and negative feedbacks can generate a wide range of possible effects on host species coexistence and turnover.

View Article and Find Full Text PDF

This paper discusses the recent progress in understanding the properties of transient dynamics in complex ecological systems. Predicting long-term trends as well as sudden changes and regime shifts in ecosystems dynamics is a major issue for ecology as such changes often result in population collapse and extinctions. Analysis of population dynamics has traditionally been focused on their long-term, asymptotic behavior whilst largely disregarding the effect of transients.

View Article and Find Full Text PDF

Abstract: While plant community theory tends to emphasize the importance of abiotic heterogeneity along niche axes, much empirical work seeks to characterize the influence of the absolute magnitude of key abiotic variables on diversity. Both magnitude (as reflected, e.g.

View Article and Find Full Text PDF

Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics.

View Article and Find Full Text PDF