The primary cilium (PC) has emerged as an indispensable cellular antenna essential for signal transduction of important cell signaling pathways. The rapid acquisition of knowledge about PC biology has raised attention to PC as a therapeutic target in some neurological and psychiatric diseases. However, the role of PC in oligodendrocytes and its participation in myelination/remyelination remain poorly understood.
View Article and Find Full Text PDFThe p70 ribosomal S6 kinases (p70 ribosomal S6 kinase 1 and p70 ribosomal S6 kinase 2) are downstream targets of the mechanistic target of rapamycin signalling pathway. p70 ribosomal S6 kinase 1 specifically has demonstrated functions in regulating cell size in and in insulin-sensitive cell populations in mammals. Prior studies demonstrated that the mechanistic target of the rapamycin pathway promotes oligodendrocyte differentiation and developmental myelination; however, how the immediate downstream targets of mechanistic target of rapamycin regulate these processes has not been elucidated.
View Article and Find Full Text PDFOligodendrocyte development is a critical process timely and spatially regulated to ensure proper myelination of the central nervous system. HMG-box transcription factors are key regulators of oligodendrocyte lineage progression. Among these factors, Sox17 was previously identified as a positive regulator of oligodendrocyte development.
View Article and Find Full Text PDFBackground: Skin biopsy is the most relevant tool to diagnose small-fiber neuropathy. A well-documented normal dataset for intraepidermal nerve fiber in the distal leg is required to improve its diagnostic value.
Methods: Three hundred healthy subjects were enrolled in the study, after clinical and biological screening to exclude neurological and systemic pathologies.
Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development.
View Article and Find Full Text PDFPerinatal inflammation causes immediate changes of the blood-brain barrier (BBB) and thus may have different consequences in adult life including an impact on neurological diseases such as demyelinating disorders. In order to determine if such a perinatal insult affects the course of demyelination in adulthood as "second hit," we simulated perinatal bacterial inflammation by systemic administration of lipopolysaccharide (LPS) to either pregnant mice or newborn animals. Demyelination was later induced in adult animals by cuprizone [bis(cyclohexylidenehydrazide)], which causes oligodendrocyte death with subsequent demyelination accompanied by strong microgliosis and astrogliosis.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is composed of a network of tight junctions (TJ) which interconnect cerebral endothelial cells (EC). Alterations in the TJ proteins are common in inflammatory diseases of the central nervous system (CNS) like multiple sclerosis (MS). Modulation of the BBB could thus represent a therapeutic mechanism.
View Article and Find Full Text PDFAdministration of mesenchymal stromal cells (MSC) improves functional outcome in the SOD1G93A mouse model of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS) as well as in models of other neurological disorders. We have now investigated the effect of the interaction between MSC and motor neurons (derived from both non-transgenic and mutant SOD1G93A transgenic mice), NSC-34 cells and glial cells (astrocytes, microglia) (derived again from both non-transgenic and mutant SOD1G93A ALS transgenic mice) in vitro. In primary motor neurons, NSC-34 cells and astrocytes, MSC conditioned medium (MSC CM) attenuated staurosporine (STS) - induced apoptosis in a concentration-dependent manner.
View Article and Find Full Text PDFFor the treatment of patients with multiple sclerosis there are no regenerative approaches to enhance remyelination. Mesenchymal stem cells (MSC) have been proposed to exert such regenerative functions. Intravenous administration of human MSC reduced the clinical severity of experimental autoimmune encephalomyelitis (EAE), an animal model mimicking some aspects of multiple sclerosis.
View Article and Find Full Text PDFCuprizone [bis(cyclohexylidenehydrazide)]-induced toxic demyelination is an experimental animal model commonly used to study de- and remyelination in the central nervous system. In this model, mice are fed with the copper chelator cuprizone which leads to oligodendrocyte death with subsequent demyelination. The underlying mechanisms of cuprizone-induced oligodendrocyte death are still unknown, and appropriate in vitro investigations to study these mechanisms are not available.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
December 2012
2-chlorodeoxyadenosine (CdA, Cladribine) is an immunosuppressant that has recently been shown to be effective in the treatment of multiple sclerosis (MS). There is extensive clinical experience with CdA for the treatment of neoplastic diseases, especially hematologic malignancies, due to its apoptotic effects on leukemic and several other neoplastic cells. Furthermore, CdA crosses the blood-brain-barrier and thus may also exert its effects directly on cells of the central nervous system (CNS).
View Article and Find Full Text PDFThe chemokine receptors CCR1, CCR2, CCR3, CCR5, and CXCR2 have been found to be expressed on microglia in many neurodegenerative diseases, such as multiple sclerosis and Alzheimer's disease. There is emerging evidence that chemokines, besides chemoattraction, might directly modulate reactive profiles of microglia. To address this hypothesis we have investigated the effects of CCL2, CCL3, CCL5, and CXCL1 on cytokine and growth factor production, NO synthesis, and phagocytosis in non-stimulated and lipopolysaccharide-stimulated primary rat microglia.
View Article and Find Full Text PDFBackground: STOP (Stable Tubulin-Only Polypeptide) null mice show behavioral deficits, impaired synaptic plasticity, decrease in synaptic vesicular pools and disturbances in dopaminergic transmission, and are considered a neurodevelopmental model of schizophrenia. Olfactory neurons highly express STOP protein and are continually generated throughout life. Experimentally-induced loss of olfactory neurons leads to epithelial regeneration within two months, providing a useful model to evaluate the role played by STOP protein in adult olfactory neurogenesis.
View Article and Find Full Text PDF