Publications by authors named "Karel Tyml"

Background: Despite many animal studies and clinical trials, mortality in sepsis remains high. This may be due to the fact that most experimental studies of sepsis employ young animals, whereas the majority of septic patients are elderly (60 - 70 years). The objective of the present study was to examine the sepsis-induced inflammatory and pro-coagulant responses in aged mice.

View Article and Find Full Text PDF

Sepsis, life-threatening organ dysfunction caused by a dysfunctional host response to infection, is associated with high mortality. A promising strategy to improve the outcome is to inject patients intravenously with ascorbate (vitamin C). In animal models of sepsis, this injection improves survival and, among others, the microvascular function.

View Article and Find Full Text PDF

Background: We discovered that lipopolysaccharide (LPS, an initiating factor in sepsis) and hypoxia-reoxygenation (H/R, a confounding factor) reduce electrical coupling between microvascular endothelial cells from wild-type (WT) but not Cx40-/- mice. Because Cx40 knockout could result in nonspecific effects, this discovery may not establish the causal relationship between Cx40 and reduced coupling. Using the same cell culture model, we aimed to address this uncertainty by using the rescue-of-function approach.

View Article and Find Full Text PDF

Plugging of the capillary bed can lead to organ failure and mortality in sepsis. We have reported that intravenous ascorbate injection reduces platelet adhesion to the capillary wall and capillary plugging in septic mice. Both platelet adhesion and capillary plugging require P-selectin, a key adhesion molecule.

View Article and Find Full Text PDF

The microcirculation during sepsis fails due to capillary plugging involving microthrombosis. We demonstrated that intravenous injection of ascorbate reduces this plugging, but the mechanism of this beneficial effect remains unclear. We hypothesize that ascorbate inhibits the release of the antifibrinolytic plasminogen activator inhibitor-1 (PAI-1) from endothelial cells and platelets during sepsis.

View Article and Find Full Text PDF

Plugging of the capillary bed in tissues correlates with organ failure during sepsis. In septic mouse skeletal muscle, we showed that blood in capillaries becomes hypercoagulable and that ascorbate injection inhibits capillary plugging. In the present study, we hypothesized that ascorbate promotes fibrinolysis, reversing this plugging.

View Article and Find Full Text PDF

Background: Sepsis, a potential risk associated with surgery, leads to a systemic inflammatory response including the plugging of capillary beds. This plugging may precipitate organ failure and subsequent death. We have shown that capillary plugging can be reversed rapidly within 1 h by intravenous injection of ascorbate in mouse skeletal muscle.

View Article and Find Full Text PDF

Objective: Compromised perfusion of the capillary bed can lead to organ failure and mortality in sepsis. We have reported that intravenous injection of ascorbate inhibits platelet adhesion and plugging in septic capillaries. In this study, we hypothesized that ascorbate reduces aggregation of platelets and their surface expression of P-selectin (a key adhesion molecule) in mice.

View Article and Find Full Text PDF

Atrial fibrillation (AF), the most common cardiac arrhythmia seen in general practice, can be promoted by conduction slowing. Cardiac impulse conduction depends on gap junction channels, which are composed of connexins (Cxs). While atrial Cx40 and Cx43 are equally expressed, AF studies have primarily focused on Cx40 reductions.

View Article and Find Full Text PDF

Sepsis is a complex multifaceted response to a local infectious insult. One important facet is the circulatory system dysfunction, which includes capillary bed plugging. This review addresses the mechanisms of capillary plugging and highlights our recent discoveries on the roles of NO, ROS, and activated coagulation in platelet adhesion and blood flow stoppage in septic mouse capillaries.

View Article and Find Full Text PDF

In arterioles, a locally initiated diameter change can propagate rapidly along the vessel length (arteriolar conducted response), thus contributing to arteriolar hemodynamic resistance. The response is underpinned by electrical coupling along the arteriolar endothelial layer. Connexins (Cx; constituents of gap junctions) are required for this coupling.

View Article and Find Full Text PDF

Purpose: Impaired microvascular perfusion in sepsis is not treated effectively because its mechanism is unknown. Since inflammatory and coagulation pathways cross-activate, we tested if stoppage of blood flow in septic capillaries is due to oxidant-dependent adhesion of platelets in these microvessels.

Methods: Sepsis was induced in wild type, eNOS(-/-), iNOS(-/-), and gp91phox(-/-) mice (n = 14-199) by injection of feces into the peritoneum.

View Article and Find Full Text PDF

Connexins (Cx) are recognized as structural constituents of gap-junctional intercellular communication (GJIC). However, their function may extend beyond facilitating the exchange of metabolites and electrical signals between cells. In this study we asked if increased production of reactive oxygen species (ROS) in microvascular endothelial cells challenged by hypoxia/reoxygenation (H/R) requires Cx40, independent of GJIC.

View Article and Find Full Text PDF

A 225 microT, extremely low frequency, pulsed electromagnetic field (PEMF) that was designed for the induction of antinociception, was tested for its effectiveness to influence blood flow within the skeletal microvasculature of a male Sprague-Dawley rat model (n = 103). Acetylcholine (0.1, 1.

View Article and Find Full Text PDF

We have previously shown that increased nitric oxide (NO) production in sepsis impairs arteriolar-conducted vasoconstriction cGMP independently and that the gap junction protein connexin (Cx) 37 is required for this conducted response. In the present study, we hypothesized that NO impairs interendothelial electrical coupling in sepsis by targeting Cx37. We examined the effect of exogenous NO on coupling in monolayers of cultured microvascular endothelial cells derived from the hindlimb skeletal muscle of wild-type (WT), Cx37 null, Cx40 null, and Cx43(G60S) (nonfunctional mutant) mice.

View Article and Find Full Text PDF

Objective: To determine the roles of nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the impairment of capillary blood flow in sepsis and in the reversal of this impairment by ascorbate.

Design: Prospective, controlled laboratory study.

Setting: Animal laboratory in research institute.

View Article and Find Full Text PDF

We showed that lipopolysaccharide (LPS) or hypoxia and reoxygenation (H/R) decreases electrical coupling between microvascular endothelial cells by targeting the gap junction protein connexin40 (Cx40), tyrosine kinase-, ERK1/2-, and PKA-dependently. Since LPS can compromise microvascular blood flow, resulting in micro-regional H/R, the concurrent LPS + H/R could reduce coupling to a much greater extent than LPS or H/R alone. We examined this possibility in a model of cultured microvascular endothelial cells (mouse skeletal muscle origin) in terms of electrical coupling and the phosphorylation status of Cx40.

View Article and Find Full Text PDF

Redox regulation of inducible nitric oxide synthase (iNOS) expression was investigated in lipopolysaccharide and interferon-gamma (LPS + IFNgamma)-stimulated microvascular endothelial cells from mouse skeletal muscle. Unstimulated endothelial cells produced reactive oxygen species (ROS) sensitive to inhibition of NADPH oxidase (apocynin and DPI), mitochondrial respiration (rotenone) and NOS (L-NAME). LPS + IFNgamma caused a marked increase in ROS production; this increase was abolished by inhibition of NADPH oxidase (apocynin, DPI and p47phox deficiency).

View Article and Find Full Text PDF

Objective: The mechanism of neuronal nitric oxide synthase (nNOS)-dependent reduction in arteriolar conducted vasoconstriction in sepsis, and the possible protection by antioxidants, are unknown. The authors hypothesized that ascorbate inhibits the conduction deficit by reducing nNOS-derived NO production.

Methods: Using intravital microscopy and the cecal ligation and perforation (CLP) model of sepsis (24 h), arterioles in the cremaster muscle of male C57BL/6 wild-type mice were locally stimulated with KCl to initiate conducted vasoconstriction.

View Article and Find Full Text PDF

Objective: Mitogen-activated protein kinases (MAPK) in microvascular endothelial cells (EC) may participate in organ pathophysiology following hypoxia/reoxygenation (H/R). The authors aimed to determine the role of MAPK in H/R-induced reactive oxygen species (ROS) generation in mouse microvascular EC.

Methods: Cultured EC derived from skeletal muscle of male wild-type (WT), gp91phox-/- or p47phox-/- mice were subjected to hypoxia (0.

View Article and Find Full Text PDF

Objective: Sepsis-stimulated nitric oxide (NO) production impairs arteriolar responsiveness in skeletal muscle. Using wild type (WT), eNOS(-/-), iNOS(-/-) and nNOS(-/-) mice, we aimed to determine the key nitric oxide synthase (NOS) isoenzyme(s) responsible for the arteriolar hyporesponsiveness to acetylcholine (ACh) in septic skeletal muscle.

Methods: Sepsis was induced by the cecal ligation and perforation procedure (24 h model).

View Article and Find Full Text PDF

The production of reactive oxygen species (ROS) is central to the etiology of endothelial dysfunction in sepsis. Endothelial cells respond to infection by activating NADPH oxidases that are sources of intracellular ROS and potential targets for therapeutic administration of antioxidants. Ascorbate is an antioxidant that accumulates in these cells and improves capillary blood flow, vascular reactivity, arterial blood pressure, and survival in experimental sepsis.

View Article and Find Full Text PDF

Electrical coupling along the endothelium is central in the arteriolar conducted response and in control of vascular resistance. It has been shown that exposure of endothelium to lipopolysaccharide (LPS, an initiating factor in sepsis) reduces intercellular communication in vitro and in vivo. The molecular basis for this reduction is not known.

View Article and Find Full Text PDF

Objective: Increased nitric oxide (NO) production in sepsis precipitates microcirculatory dysfunction. We aimed (i) to determine if NO is the key water-soluble factor in the recently discovered sepsis-induced deficit in arteriolar conducted vasoconstriction, (ii) to identify which nitric oxide synthase (NOS) isoforms account for this deficit, and (iii) to examine the potential role of connexin37 (Cx37, a hypothesized signaling target of NO) in arteriolar conduction.

Methods: Using intravital microscopy and the cecal ligation and perforation 24-h model of sepsis, arterioles in the cremaster muscle of male C57BL/6 wild-type (WT), iNOS-/-, eNOS-/-, nNOS-/- and Cx37-/- mice were locally stimulated with KCl to initiate conducted vasoconstriction.

View Article and Find Full Text PDF