It is advisable to monitor and regulate inorganic arsenic (iAs) in food and feedstuff. This work describes an update and validation of a method of selective hydride generation (HG) with inductively coupled plasma mass spectrometry (ICP-MS) for high-throughput screening of iAs content in seafood samples after microwave-assisted extraction with diluted nitric acid and hydrogen peroxide. High concentration of HCl (8 M) for HG along with hydrogen peroxide in samples of a same concentration as used for extraction leads to a selective conversion of iAs to volatile arsine that is released and transported to the detector.
View Article and Find Full Text PDFAtomization of SeH in an externally heated multiple microflame quartz tube atomizer (MMQTA) as well as planar dielectric barrier discharge (DBD) atomizer was investigated using a variety of probes. Deposits of Se on inner surfaces of the atomizers were quantified and their distribution visualized by autoradiography with Se radiotracer. The gas phase fraction of Se transported beyond the confines of the atomizers was also determined.
View Article and Find Full Text PDFHydride generation (HG) from arsenosugars (dimethylarsinoylribosides) in batch and flow injection modes was studied. Its efficiency was found higher in HSO medium than in HCl and higher in the batch mode than in the flow injection mode. To increase the efficiency in the flow injection mode a new generator with two inlets of NaBH solution was designed.
View Article and Find Full Text PDFDemethylation during generation of volatile hydrides (HG), i.e. formation of noncorresponding arsanes from monomethylarsonic acid (MAs(V)), dimethylarsinic acid (DMAs(V)), and trimethylarsine oxide (TMAs(V)O) by the reaction of sodium tetrahydridoborate(1-) (THB) with different acids under analytical conditions, was investigated and characterized.
View Article and Find Full Text PDFAn experimental setup consisting of a flow injection hydride generator coupled to an atomic fluorescence spectrometer was optimized in order to generate arsanes from tri- and pentavalent inorganic arsenic species (iAs(III), iAs(V)), monomethylarsonic acid (MAs(V)), and dimethylarsinic acid (DMAs(V)) with 100% efficiency with the use of only HCl and NaBH4 as the reagents. The optimal concentration of HCl was 2 mol L(-1); the optimal concentration of NaBH4 was 2.5% (m/v), and the volume of the reaction coil was 8.
View Article and Find Full Text PDF