Publications by authors named "Karel De Winter"

Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.

View Article and Find Full Text PDF

The efficient production of biobased organic acids is crucial to move to a more sustainable and eco-friendly economy, where muconic acid is gaining interest as a versatile platform chemical to produce industrial building blocks, including adipic acid and terephthalic acid. In this study, a platform strain able to convert glucose and xylose into ,-muconic acid was further engineered to eliminate C2 dependency, improve muconic acid tolerance, enhance production and growth performance, and substantially reduce the side production of the intermediate protocatechuic acid. This was achieved by reintroducing the gene and overexpression of genes.

View Article and Find Full Text PDF

CO-based poly(3-hydroxybutyrate) (PHB) can be produced by the versatile bacterium Cupriavidus necator through chemolithoautotrophic fermentation, using a gas mixture consisting of CO, H, and O. Despite offering a propitious route for carbon-neutral bioplastic manufacturing, its adoption is currently hampered by the wide explosive range of the required gas mixture, as well as the limited gas-to-liquid mass transfer rates. To address these challenges, pressure fermentation was applied as a robust and effective strategy, while ensuring safe operation by adhering to the limiting O concentration, utilizing state-of-the-art bioreactors.

View Article and Find Full Text PDF

Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate) (PHB) is a microbially produced biopolymer that is emerging as a propitious alternative to petroleum-based plastics owing to its biodegradable and biocompatible properties. However, to date, the relatively high costs related to the PHB production process are hampering its widespread commercialization. Since feedstock costs add up to half of the total production costs, ample research has been focusing on the use of inexpensive industrial side streams as carbon sources.

View Article and Find Full Text PDF

Over the past decade, formic acid and acetic acid have gained increasing attention as alternative feedstocks for poly-3-hydroxybutyrate (PHB) production as these potentially CO-derived molecules are naturally assimilated by Cupriavidus necator. Both organic acids were individually evaluated in fed-batch fermentations at bioreactor scale. Acetic acid was revealed as the most promising carbon source yielding 42.

View Article and Find Full Text PDF

Cost-efficient (bio)chemical production processes are essential to evaluate the commercial and industrial applications of promising carbohydrates and also are essential to ensure economically viable production processes. Here, the synthesis of the naturally occurring disaccharide kojibiose (2-O-α-d-glucopyranosyl-d-glucopyranoside) was evaluated using different Bifidobacterium adolescentis sucrose phosphorylase variants. Variant L341I_Q345S was found to efficiently synthesize kojibiose while remaining fully active after 1 week of incubation at 55 °C.

View Article and Find Full Text PDF

The combination of ion mobility and mass spectrometry (MS) affords significant improvements over conventional MS/MS, especially in the characterization of isomeric metabolites due to the differences in their collision cross sections (CCS). Experimentally obtained CCS values are typically matched with theoretical CCS values from Trajectory Method (TM) and/or Projection Approximation (PA) calculations. In this paper, predictive models for CCS of deprotonated phenolics were developed using molecular descriptors and chemometric tools, stepwise multiple linear regression (SMLR), principal components regression (PCR), and partial least squares regression (PLS).

View Article and Find Full Text PDF

Despite the growing importance of prebiotics in nutrition and gastroenterology, their structural variety is currently still very limited. The lack of straightforward procedures to gain new products in sufficient amounts often hampers application testing and further development. Although the enzyme sucrose phosphorylase can be used to produce the rare disaccharide kojibiose (α-1,2-glucobiose) from the bulk sugars sucrose and glucose, the target compound is only a side product that is difficult to isolate.

View Article and Find Full Text PDF

Although numerous biologically active molecules exist as glycosides in nature, information on the activity, stability, and solubility of glycosylated antioxidants is rather limited to date. In this work, a wide variety of antioxidants were glycosylated using different phosphorylase enzymes. The resulting antioxidant library, containing α/β-glucosides, different regioisomers, cellobiosides, and cellotriosides, was then characterized.

View Article and Find Full Text PDF

Polyphenols display a number of interesting properties but their low solubility limits practical applications. In that respect, glycosylation offers a solution for which sucrose phosphorylase has been proposed as a cost-effective biocatalyst. However, its activity on alternative acceptor substrates is too low for synthetic purposes and typically requires the addition of organic (co-)solvents.

View Article and Find Full Text PDF

Trans- and cis-2-aryl-3-(2-cyanoethyl)aziridines, prepared via alkylation of the corresponding 2-aryl-3-(tosyloxymethyl)aziridines with the sodium salt of trimethylsilylacetonitrile, were transformed into variable mixtures of 4-[aryl(alkylamino)methyl]butyrolactones and 5-[aryl(hydroxy)methyl]pyrrolidin-2-ones via KOH-mediated hydrolysis of the cyano group, followed by ring expansion. In addition, next to this chemical approach, enzymatic hydrolysis of the former aziridinyl nitriles by means of a nitrilase was performed as well, interestingly providing a selective route towards the above-mentioned functionalized γ-lactams.

View Article and Find Full Text PDF

This study describes an efficient, large scale fermentation of a recombinant α-L-rhamnosidase originating from Aspergillus terreus. High-cell-density Pichia pastoris fermentation resulted in yields up to 627 U/L/h. The recombinant enzyme was used for the reverse rhamnosylation of various small organic compounds.

View Article and Find Full Text PDF

The industrial use of sucrose phosphorylase (SP), an interesting biocatalyst for the selective transfer of α-glucosyl residues to various acceptor molecules, has been hampered by a lack of long-term stability and low activity towards alternative substrates. We have recently shown that the stability of the SP from Bifidobacterium adolescentis can be significantly improved by the formation of a cross-linked enzyme aggregate (CLEA). In this work, it is shown that the transglucosylation activity of such a CLEA can also be improved by molecular imprinting with a suitable substrate.

View Article and Find Full Text PDF

Sucrose phosphorylase is a promising biocatalyst for the glycosylation of a wide variety of acceptor molecules, but its low thermostability is a serious drawback for industrial applications. In this work, the stability of the enzyme from Bifidobacterium adolescentis has been significantly improved by a combination of smart and rational mutagenesis. The former consists of substituting the most flexible residues with amino acids that occur more frequently at the corresponding positions in related sequences, while the latter is based on a careful inspection of the enzyme's crystal structure to promote electrostatic interactions.

View Article and Find Full Text PDF

Sucrose phosphorylase is an interesting biocatalyst that can glycosylate a variety of small molecules using sucrose as a cheap but efficient donor substrate. The low thermostability of the enzyme, however, limits its industrial applications, as these are preferably performed at 60°C to avoid microbial contamination. Cross-linked enzyme aggregates (CLEAs) of the sucrose phosphorylase from Bifidobacterium adolescentis were found to have a temperature optimum that is 17°C higher than that of the soluble enzyme.

View Article and Find Full Text PDF

Sucrose phosphorylase from Bifidobacterium adolescentis was recombinantly expressed in Escherichia coli and purified by use of a His-tag. Kinetic characterization of the enzyme revealed an optimal temperature for phosphorolytic activity of 58°C, which is surprisingly high for an enzyme from a mesophilic source. The temperature optimum could be further increased to 65°C by multipoint covalent immobilization on Sepabeads EC-HFA.

View Article and Find Full Text PDF