The synthesis of complex protein-based bioconjugates has been facilitated greatly by recent developments in chemoselective methods for biomolecular modification. The oxidative coupling of o-aminophenols or catechols with aniline functional groups is chemoselective, mild, and rapid; however, the oxidatively sensitive nature of the electron-rich aromatics and the paucity of commercial sources pose some obstacles to the general use of these reactive strategies. Herein, we identify o-methoxyphenols as air-stable, commercially available derivatives that undergo efficient oxidative couplings with anilines in the presence of periodate as oxidant.
View Article and Find Full Text PDFMethods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner.
View Article and Find Full Text PDF