Background: The microvasculature of the central nervous system (CNS), which delivers oxygen and nutrients and forms a critical barrier protecting the CNS, is deleteriously affected by both Alzheimer's Disease (AD) and Type 2 Diabetes (T2D). Previous studies have shown pericyte dropout and vessel constriction in brain capillaries in AD, while other studies have shown pericyte bridging and dropout in retinal capillaries in T2D. T2D patients have increased risk of AD, suggesting potentially related microvascular pathological mechanisms.
View Article and Find Full Text PDFMicrocirculation
October 2024
The brain microvasculature, which delivers oxygen and nutrients and forms a critical barrier protecting the central nervous system via capillaries, is deleteriously affected by both Alzheimer's disease (AD) and type 2 diabetes (T2D). T2D patients have an increased risk of developing AD, suggesting potentially related microvascular pathological mechanisms. Pericytes are an ideal cell type to study for functional links between AD and T2D.
View Article and Find Full Text PDFCardiovascular toxicity causes adverse drug reactions and may lead to drug removal from the pharmaceutical market. Cancer therapies can induce life-threatening cardiovascular side effects such as arrhythmias, muscle cell death, or vascular dysfunction. New technologies have enabled cardiotoxic compounds to be identified earlier in drug development.
View Article and Find Full Text PDF