Publications by authors named "Karch C"

Autosomal dominant Alzheimer's disease (ADAD) is driven by rare variants in APP, PSEN1, and PSEN2. Although more than 200 pathogenic variants in these genes are known to cause ADAD, other variants are benign, may act as risk factors, or may even reduce Alzheimer's disease risk (e.g.

View Article and Find Full Text PDF

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved.

View Article and Find Full Text PDF
Article Synopsis
  • * In Alzheimer's disease, these networks become more chaotic, as indicated by a drop in the small-world coefficient, a change linked to cognitive decline throughout the disease's progression.
  • * Our study examined the relationship between 10 cerebrospinal fluid protein biomarkers and small-world coefficients in Alzheimer's mutation carriers and non-carriers, finding that certain protein abnormalities indicate early changes in grey matter networks, while markers for inflammation and axonal injury correlate with declining small-world values.
View Article and Find Full Text PDF

This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (), presenilin 1 (), or presenilin 2 () genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset.

View Article and Find Full Text PDF

This study explored the role of the ubiquitin-proteasome system (UPS) in dominantly inherited Alzheimer's disease (DIAD) by examining changes in cerebrospinal fluid (CSF) levels of UPS proteins along with disease progression, AD imaging biomarkers (PiB PET, tau PET), neurodegeneration imaging measures (MRI, FDG PET), and Clinical Dementia Rating (CDR). Using the SOMAscan assay, we detected subtle increases in specific ubiquitin enzymes associated with proteostasis in mutation carriers (MCs) up to two decades before the estimated symptom onset. This was followed by more pronounced elevations of UPS-activating enzymes, including E2 and E3 proteins, and ubiquitin-related modifiers.

View Article and Find Full Text PDF

Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD.

View Article and Find Full Text PDF

We report the generation of a gene-edited human induced pluripotent stem cell (iPSC) line from an Alzheimer's disease patient-derived iPSC line harbouring the PSEN1 H163R mutation. This line demonstrates pluripotent stem cell morphology, expression of pluripotency markers, and maintains a normal karyotype.

View Article and Find Full Text PDF

Background: Genetic variants that cause autosomal dominant Alzheimer's disease are highly penetrant but vary substantially regarding age at symptom onset (AAO), rates of cognitive decline, and biomarker changes. Most pathogenic variants that cause autosomal dominant Alzheimer's disease are in presenilin 1 (PSEN1), which encodes the catalytic core of γ-secretase, an enzyme complex that is crucial in production of amyloid β. We aimed to investigate whether the heterogeneity in AAO and biomarker trajectories in carriers of PSEN1 pathogenic variants could be predicted on the basis of the effects of individual PSEN1 variants on γ-secretase activity and amyloid β production.

View Article and Find Full Text PDF

Genetic backgrounds influence cellular phenotypes, drug responses, and health outcomes, yet most human iPSC lines are derived from individuals of European descent, with lines from indigenous Africans particularly scarce. Addressing this gap, we generated iPSCs from dermal fibroblasts of a healthy 60-year-old indigenous Nigerian male of the Babur ethnic group using Sendai virus. The iPSC line displayed a normal karyotype, was characterized for pluripotency markers and differentiated into neural progenitor cells and astrocytes.

View Article and Find Full Text PDF

Background: Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology.

View Article and Find Full Text PDF
Article Synopsis
  • - Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder caused by a mutation in the lamin A gene (LMNA), leading to premature aging and increased risk of cardiovascular events in affected children.
  • - Research using Lmna mutant mice showed that these animals formed blood clots more quickly than normal mice, with higher platelet activation and altered factors involved in blood clotting.
  • - The study suggests that the LMNA mutation contributes to faster thrombus formation due to enhanced platelet reactivity, highlighting the need for further research on antiplatelet treatments for children with HGPS to reduce their risk of cardiovascular complications.
View Article and Find Full Text PDF

Introduction: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research.

View Article and Find Full Text PDF
Article Synopsis
  • The Knight-Alzheimer Disease Research Center at Washington University has been at the forefront of Alzheimer disease research for over 40 years, significantly enhancing our understanding through various studies on cognitive and molecular aspects.
  • Over 26,000 biological samples have been collected from participants, including DNA, RNA, plasma, and cerebrospinal fluid, to support extensive research on dementia and aging.
  • The Genetics and High Throughput -Omics core has conducted in-depth molecular profiling to discover new risk factors, biomarkers, and potential treatment targets for Alzheimer disease.
View Article and Find Full Text PDF

Tau protein aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP), spurring development of tau-lowering therapeutic strategies. Here, we report fully human bifunctional anti-tau-PEST intrabodies that bind the mid-domain of tau to block aggregation and degrade tau via the proteasome using the ornithine decarboxylase (ODC) PEST degron. They effectively reduced tau protein in human iPSC-derived cortical neurons in 2D cultures and 3D organoids, including those with the disease-associated tau mutations R5L, N279K, R406W, and V337M.

View Article and Find Full Text PDF
Article Synopsis
  • Neuronal dysfunction is a key aspect of neurodegenerative tauopathies, but immune cells like microglia also play a significant role in the disease's progression.
  • This study shows that tau mRNA and protein are present in microglia and that a specific tau mutation (IVS10+16) can change how these immune cells behave, causing issues like cytoskeletal problems and stalled phagocytosis.
  • Secretions from microglia with this mutation negatively affect neuron health, leading to decreased synaptic density, and similar characteristics were observed in human brain samples from mutation carriers, suggesting important implications for future therapies.
View Article and Find Full Text PDF

The high prevalence of breast cancer is a global health concern, compounded by the lack of safe or effective treatments for its advanced stages. These facts urge the development of novel treatment strategies. Annexin A5 (ANXA5) is a natural human protein that binds with high specificity to phosphatidylserine, a phospholipid tightly maintained in the inner leaflet of the cell membrane on most healthy cells but externalized in tumor cells and the tumor vasculature.

View Article and Find Full Text PDF

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles.

View Article and Find Full Text PDF

Introduction: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains.

Methods: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo.

View Article and Find Full Text PDF

Genetic variants in the () gene affect the onset and progression of Alzheimer's disease (AD). The Christchurch ( Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic Ch/Ch human-induced pluripotent stem cells (iPSCs) from / healthy control female iPSCs and induced them into astrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates early Alzheimer's disease changes in the brains of people with Down syndrome and those with genetic variants linked to Alzheimer's, aiming to better understand disease development and improve prevention strategies.
  • Using cross-sectional data from two cohort studies, researchers analyzed tau protein spread and its relationship with amyloid accumulation in participants aged 25 and older.
  • Findings revealed significant differences in the pattern and timing of tau accumulation in the two groups, suggesting implications for early intervention and clinical trials targeting Alzheimer's pathology.
View Article and Find Full Text PDF

Circular RNAs (circRNAs), covalently closed RNA molecules that form due to back-splicing of RNA transcripts, have recently been implicated in Alzheimer's disease and related tauopathies. circRNAs are regulated by N-methyladenosine (mA) RNA methylation, can serve as "sponges" for proteins and RNAs, and can be translated into protein via a cap-independent mechanism. Mechanisms underlying circRNA dysregulation in tauopathies and causal relationships between circRNA and neurodegeneration are currently unknown.

View Article and Find Full Text PDF

Introduction: The pace of innovation has accelerated in virtually every area of tau research in just the past few years.

Methods: In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation.

Results: Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research.

View Article and Find Full Text PDF
Article Synopsis
  • "Brain-predicted age" (BAG) uses neuroimaging to estimate biological age and reveals that those with autosomal dominant Alzheimer's disease (ADAD) show advanced brain aging about 7 years before symptoms start.
  • The study analyzed BAG in 257 ADAD mutation carriers and 179 non-carriers, finding that BAG correlates with markers of neurodegeneration, cognitive function, and tau protein levels.
  • BAG provides a straightforward measure for assessing ADAD progression, complementing existing MRI indicators while requiring less complex data analysis.
View Article and Find Full Text PDF