Background: Schizophrenia is a heterogeneous disorder with strong genetic vulnerability. Family history of schizophrenia has been considered in genetic studies under several models. genetic events seem to play a larger role in sporadic cases.
View Article and Find Full Text PDFHistones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability.
View Article and Find Full Text PDFIdentification of protective loss-of-function (LoF) mutations holds great promise for devising novel therapeutic interventions, although it faces challenges due to the scarcity of protective LoF alleles in the human genome. Exploiting the detailed mechanistic characterization of animal models of validated disease mutations offers an alternative. Here, we provide insights into protective-variant biology based on our characterization of a model of the 22q11.
View Article and Find Full Text PDFConsiderable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions to rapidly differentiate hPSCs into peripheral sensory neurons.
View Article and Find Full Text PDFDeletions on chromosome 22q11.2 are a strong genetic risk factor for development of schizophrenia and cognitive dysfunction. We employed shotgun liquid chromatography-mass spectrometry (LC-MS) proteomic and metabonomic profiling approaches on prefrontal cortex (PFC) and hippocampal (HPC) tissue from Df(16)A mice, a model of the 22q11.
View Article and Find Full Text PDFWe analyze de novo synonymous mutations identified in autism spectrum disorders (ASDs) and schizophrenia (SCZ) with potential impact on regulatory elements using data from whole-exome sequencing (WESs) studies. Focusing on five types of genetic regulatory functions, we found that de novo near-splice site synonymous mutations changing exonic splicing regulators and those within frontal cortex-derived DNase I hypersensitivity sites are significantly enriched in ASD and SCZ, respectively. These results remained significant, albeit less so, after incorporating two additional ASD datasets.
View Article and Find Full Text PDFProcessing of microRNA primary transcripts (pri-miRNAs) is highly regulated and defects in the processing machinery play a key role in many human diseases. In 22q11.2 deletion syndrome (22q11.
View Article and Find Full Text PDFIn human genetic studies of schizophrenia, we uncovered copy-number variants in RAPGEF6 and RAPGEF2 genes. To discern the effects of RAPGEF6 deletion in humans, we investigated the behavior and neural functions of a mouse lacking Rapgef6. Rapgef6 deletion resulted in impaired amygdala function measured as reduced fear conditioning and anxiolysis.
View Article and Find Full Text PDF22q11.2 deletion carriers show specific cognitive deficits, and ∼30% of them develop schizophrenia. One of the disrupted genes is ZDHHC8, which encodes for a palmitoyltransferase.
View Article and Find Full Text PDFVariation in gene expression is an important mechanism underlying susceptibility to complex disease and traits. Single nucleotide polymorphisms (SNPs) account for a substantial portion of the total detected genetic variation in gene expression but how exactly variants acting in trans modulate gene expression and disease susceptibility remains largely unknown. The BDNF Val66Met SNP has been associated with a number of psychiatric disorders such as depression, anxiety disorders, schizophrenia and related traits.
View Article and Find Full Text PDFGenome-wide scans have revealed a significant role for de novo copy number variants (CNVs) and Single Nucleotide variants (SNVs) in the genetic architecture of schizophrenia. The present study attempts to parse schizophrenia based on the presence of such de novo mutations and attempts genotype-phenotype correlation. We examined phenotypic variables across three broad categories: clinical presentation, premorbid function, disease course and functional outcome and compared them in individuals with schizophrenia carrying either a de novo CNV, a de novo SNV, or no de novo mutation.
View Article and Find Full Text PDFAlthough considerable evidence suggests that the chemical synapse is a lynchpin underlying affective disorders, how molecular insults differentially affect specific synaptic connections remains poorly understood. For instance, Neurexin 1a and 2 (NRXN1 and NRXN2) and CNTNAP2 (also known as CASPR2), all members of the neurexin superfamily of transmembrane molecules, have been implicated in neuropsychiatric disorders. However, their loss leads to deficits that have been best characterized with regard to their effect on excitatory cells.
View Article and Find Full Text PDFLoss-of-function (LOF) (i.e., nonsense, splice site, and frameshift) variants that lead to disruption of gene function are likely to contribute to the etiology of neuropsychiatric disorders.
View Article and Find Full Text PDFWe used a family-based cluster detection approach designed to localize significant rare disease-risk variants clusters within a region of interest to systematically search for schizophrenia (SCZ) susceptibility genes within 49 genomic loci previously implicated by de novo copy number variants. Using two independent whole-exome sequencing family datasets and a follow-up autism spectrum disorder (ASD) case/control whole-exome sequencing dataset, we identified variants in one gene, Fanconi-associated nuclease 1 (FAN1), as being associated with both SCZ and ASD. FAN1 is located in a region on chromosome 15q13.
View Article and Find Full Text PDFWe previously reported linkage of schizophrenia and schizoaffective disorder to 13q32-34 in the European descent Afrikaner population from South Africa. The nature of genetic variation underlying linkage peaks in psychiatric disorders remains largely unknown and both rare and common variants may be contributing. Here, we examine the contribution of common variants located under the 13q32-34 linkage region.
View Article and Find Full Text PDFWe used a mouse model of the schizophrenia-predisposing 22q11.2 microdeletion to evaluate how this genetic lesion affects cortical neural circuits at the synaptic, cellular, and molecular levels. Guided by cognitive deficits, we demonstrated that mutant mice display robust deficits in high-frequency synaptic transmission and short-term plasticity (synaptic depression and potentiation), as well as alterations in long-term plasticity and dendritic spine stability.
View Article and Find Full Text PDFMol Psychiatry
January 2014
Recurrent deletions at the 22q11.2 locus have been established as a strong genetic risk factor for the development of schizophrenia and cognitive dysfunction. Individuals with 22q11.
View Article and Find Full Text PDFA balanced chromosomal translocation segregating with schizophrenia and affective disorders in a large Scottish family disrupting DISC1 implicated this gene as a susceptibility gene for major mental illness. Here we study neurons derived from a genetically engineered mouse strain with a truncating lesion disrupting the endogenous Disc1 ortholog. We provide a detailed account of the consequences of this mutation on axonal and dendritic morphogenesis as well as dendritic spine development in cultured hippocampal and cortical neurons.
View Article and Find Full Text PDF22q11.2 microdeletions result in specific cognitive deficits and schizophrenia. Analysis of Df(16)A(+/-) mice, which model this microdeletion, revealed abnormalities in the formation of neuronal dendrites and spines, as well as altered brain microRNAs.
View Article and Find Full Text PDFDespite the successful identification of several relevant genomic loci, the underlying molecular mechanisms of schizophrenia remain largely unclear. We developed a computational approach (NETBAG+) that allows an integrated analysis of diverse disease-related genetic data using a unified statistical framework. The application of this approach to schizophrenia-associated genetic variations, obtained using unbiased whole-genome methods, allowed us to identify several cohesive gene networks related to axon guidance, neuronal cell mobility, synaptic function and chromosomal remodeling.
View Article and Find Full Text PDFTo evaluate evidence for de novo etiologies in schizophrenia, we sequenced at high coverage the exomes of families recruited from two populations with distinct demographic structures and history. We sequenced a total of 795 exomes from 231 parent-proband trios enriched for sporadic schizophrenia cases, as well as 34 unaffected trios. We observed in cases an excess of de novo nonsynonymous single-nucleotide variants as well as a higher prevalence of gene-disruptive de novo mutations relative to controls.
View Article and Find Full Text PDFA hexanucleotide repeat expansion in C9ORF72 was recently found to cause some cases of frontotemporal lobar degeneration, frontotemporal dementia (FTD)-amyotrophic lateral sclerosis, and amyotrophic lateral sclerosis. Patients with frontotemporal lobar degeneration with the C9ORF72 repeat expansion are more likely than those without to present with psychosis. In this study, we screened DNA samples from 192 unrelated subjects with schizophrenia for the C9ORF72 repeat expansion.
View Article and Find Full Text PDF