Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface.
View Article and Find Full Text PDFMicrobial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment.
View Article and Find Full Text PDFIn this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.
View Article and Find Full Text PDFSuper-resolution microscopy in the form of photoactivated localization microscopy (PALM) offers the possibility of counting single molecules in a cell, a cellular compartment or a molecular complex. PALM can, therefore, underpin molecular and biochemical processes with a numeric and stoichiometric understanding of the interacting players. Here, we introduce the physical principles underlying PALM and provide a step-by-step protocol of how to apply PALM to questions related to the biology and pathophysiology of P.
View Article and Find Full Text PDFThe knob-associated histidine-rich protein (KAHRP) plays a pivotal role in the pathophysiology of Plasmodium falciparum malaria by forming membrane protrusions in infected erythrocytes, which anchor parasite-encoded adhesins to the membrane skeleton. The resulting sequestration of parasitized erythrocytes in the microvasculature leads to severe disease. Despite KAHRP being an important virulence factor, its physical location within the membrane skeleton is still debated, as is its function in knob formation.
View Article and Find Full Text PDFWe search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection.
View Article and Find Full Text PDFUnderstanding the function of protein complexes requires information on their molecular organization, specifically, their oligomerization level. Optical super-resolution microscopy can localize single protein complexes in cells with high precision, however, the quantification of their oligomerization level, remains a challenge. Here, we present a Quantitative Algorithm for Fluorescent Kinetics Analysis (QAFKA), that serves as a fully automated workflow for quantitative analysis of single-molecule localization microscopy (SMLM) data by extracting fluorophore "blinking" events.
View Article and Find Full Text PDFSingle-molecule localization microscopy (SMLM) reports on protein organization in cells with near-molecular resolution and in combination with stoichiometric labeling enables protein counting. Fluorescent proteins allow stoichiometric labeling of cellular proteins; however, most methods either lead to overexpression or are complex and time demanding. We introduce CRISPR/Cas12a for simple and efficient tagging of endogenous proteins with a photoactivatable protein for quantitative SMLM and single-particle tracking.
View Article and Find Full Text PDFThe quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. Using single-molecule microscopy combined with super-resolution techniques on intact cells, we describe here a dynamic monomer-dimer equilibrium of µ-opioid receptors (µORs), where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates both temporally and in its agonist- and phosphorylation-dependence with β-arrestin2 binding to the receptors.
View Article and Find Full Text PDFTNFR1 is a crucial regulator of NF-ĸB-mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα- and TNFR1-controlled NF-ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2-mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial.
View Article and Find Full Text PDFLigand-induced tumor necrosis factor receptor 1 (TNFR1) activation controls nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling, cell proliferation, programmed cell death, and survival and is crucially involved in inflammation, autoimmune disorders, and cancer progression. Despite the relevance of TNFR1 clustering for signaling, oligomerization of ligand-free and ligand-activated TNFR1 remains controversial. At present, models range from ligand-independent receptor predimerization to ligand-induced oligomerization.
View Article and Find Full Text PDFPhotobleaching is a major challenge in fluorescence microscopy, in particular if high excitation light intensities are used. Signal-to-noise and spatial resolution may be compromised, which limits the amount of information that can be extracted from an image. Photobleaching can be bypassed by using exchangeable labels, which transiently bind to and dissociate from a target, thereby replenishing the destroyed labels with intact ones from a reservoir.
View Article and Find Full Text PDFPfEMP1 (erythrocyte membrane protein 1) adhesins play a pivotal role in the pathophysiology of falciparum malaria, by mediating sequestration of -infected erythrocytes in the microvasculature. PfEMP1 variants are expressed by genes and are presented on membrane elevations, termed knobs. However, the organization of PfEMP1 on knobs is largely unclear.
View Article and Find Full Text PDFHow membrane proteins oligomerize determines their function. Superresolution microscopy can report on protein clustering and extract quantitative molecular information. Here, we evaluate the blinking kinetics of four photoactivatable fluorescent proteins for quantitative single-molecule microscopy.
View Article and Find Full Text PDFThe human MET receptor tyrosine kinase contributes to vertebrate development and cell proliferation. As a proto-oncogene, it is a target in cancer therapies. MET is also relevant for bacterial infection by and is activated by the bacterial protein internalin B.
View Article and Find Full Text PDFSingle-molecule localization microscopy (SMLM) can be used to count fluorescently labeled molecules even when they are not individually resolved. We demonstrate SMLM molecule counting for nucleic acids labeled with the organic fluorophore Alexa Fluor 647 and imaged under photoswitching conditions. From the observed distributions of the number of fluorophore blinking events, we extract the number of fluorophores per spot using a statistical model.
View Article and Find Full Text PDFCD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively.
View Article and Find Full Text PDFIntroduction: Given the prevalence and harm of sexually transmitted infections (STIs), there is a need to examine safer sex strategies in the context of romantic relationships and extradyadic sexual encounters. Sexual infidelity is associated with a variety of detrimental psychosocial outcomes; however, little research has addressed the sexual health ramifications of sexually unfaithful partners and members of other high-risk nonmonogamous lifestyles.
Aims: To determine whether sexually unfaithful individuals or "negotiated nonmonogamous" individuals are more likely to engage in sexual health risk reduction behaviors during extradyadic encounters and with their primary partner.