Nowadays, intense electromagnetic (EM) radiation in the far-infrared (FIR) spectral range is an advanced tool for scientific research in biology, chemistry, and material science because many materials leave signatures in the radiation spectrum. Narrow-band spectral lines enable researchers to investigate the matter response in greater detail. The generation of highly monochromatic variable frequency FIR radiation has therefore become a broad area of research.
View Article and Find Full Text PDFWe report on the observation of incoherent Cherenkov radiation emitted by a 5.3 GeV positron beam circulating in the Cornell electron-positron storage ring as the beam passes in the close vicinity of the surface of a fused silica radiator (i.e.
View Article and Find Full Text PDFWe report the observation of shadowing between two optical transition radiation (OTR) sources from a 205 MeV electron beam. The total optical intensity is measured as a function of the distance d between the sources, covering the range 0
A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [P. Raimondi and A. Seryi, Phys.
View Article and Find Full Text PDFWe represent the first experimental observation of the point spread function (PSF) of optical transition radiation (OTR) performed at KEK-Accelerator Test Facility extraction line. We have demonstrated that the PSF vertical polarization component has a central minimum with a two lobe distribution. However, the distribution width varied significantly with wavelength.
View Article and Find Full Text PDFAn experiment on the investigation of optical diffraction radiation (ODR) from a slit target as a possible tool for noninvasive electron beam-size diagnostics has been performed at the KEK accelerator test facility. The experimental setup has been installed at the diagnostics section of the extraction line. We have performed the first incoherent ODR observation from a slit target.
View Article and Find Full Text PDFPhys Rev Lett
February 2004
For high luminosity in electron-positron linear colliders, it is essential to generate low vertical emittance beams. We report on the smallest vertical emittance achieved in single-bunch-mode operation of the Accelerator Test Facility, which satisfies the requirement of the x-band linear collider. The emittances were measured with a laser-wire beam-profile monitor installed in the damping ring.
View Article and Find Full Text PDFAn experiment to investigate the diffraction radiation from a single edge target has been performed at the accelerator test facility of KEK with the aim of developing noninvasive beam diagnostics. The yield and the angular distribution of diffraction radiation as a function of the impact parameter was measured in the visible light region. The distributions were qualitatively consistent with the theoretical expectation.
View Article and Find Full Text PDFElectron beams with the lowest, normalized transverse emittance recorded so far were produced and confirmed in single-bunch-mode operation of the Accelerator Test Facility at KEK. We established a tuning method of the damping ring which achieves a small vertical dispersion and small x-y orbit coupling. The vertical emittance was less than 1% of the horizontal emittance.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
June 2000
A simple model for calculating the diffraction radiation characteristics from an ultrarelativistic charged particle moving close to a tilted ideally conducting strip is developed. Resonant diffraction radiation (RDR) is treated as a superposition of the radiation fields for periodically spaced strips. The RDR characteristics have been calculated as a function of the number of grating elements, tilted angle, and initial particle energy.
View Article and Find Full Text PDF