Chloroplast genomes present an alternative strategy for large-scale engineering of photosynthetic eukaryotes. Prior to our work, the chloroplast genomes of (204 kb) and (140 kb) had been cloned using bacterial and yeast artificial chromosome (BAC/YAC) libraries, respectively. These methods lack design flexibility as they are reliant upon the random capture of genomic fragments during BAC/YAC library creation; additionally, both demonstrated a low efficiency (≤ 10%) for correct assembly of the genome in yeast.
View Article and Find Full Text PDFAm J Health Syst Pharm
November 2024
Am J Health Syst Pharm
August 2024
Ammonia availability has a crucial role in agriculture as it ensures healthy plant growth and increased crop yields. Since diazotrophs are the only organisms capable of reducing dinitrogen to ammonia, they have great ecological importance and potential to mitigate the environmental and economic costs of synthetic fertilizer use. Rhizobia are especially valuable being that they can engage in nitrogen-fixing symbiotic relationships with legumes, and they demonstrate great diversity and plasticity in genomic and phenotypic traits.
View Article and Find Full Text PDFPurpose: Health-system pharmacists play a crucial role in monitoring the pharmaceutical pipeline to manage formularies, allocate resources, and optimize clinical programs for new therapies. This article aims to support pharmacists by providing periodic updates on new and anticipated novel drug approvals.
Summary: Selected drug approvals anticipated in the 12-month period covering the first quarter of 2024 through the fourth quarter of 2024 are reviewed.
Biallelic mutations in Protein O-mannosyltransferase 1 (POMT1) are among the most common causes of a severe group of congenital muscular dystrophies (CMDs) known as dystroglycanopathies. POMT1 is a glycosyltransferase responsible for the attachment of a functional glycan mediating interactions between the transmembrane glycoprotein dystroglycan and its binding partners in the extracellular matrix (ECM). Disruptions in these cell-ECM interactions lead to multiple developmental defects causing brain and eye malformations in addition to CMD.
View Article and Find Full Text PDFPurpose: Health-system pharmacists play a crucial role in monitoring the pharmaceutical pipeline to manage formularies, allocate resources, and optimize clinical programs for new therapies. This article aims to support pharmacists by providing updates on new and anticipated novel drug approvals.
Summary: Selected drug approvals anticipated in the 12-month period covering the fourth quarter of 2023 through the third quarter of 2024 are reviewed.
There is growing impetus to expand the repertoire of chassis available to synthetic biologists. Chloroplast genomes present an interesting alternative for engineering photosynthetic eukaryotes; however, development of the chloroplast as a synthetic biology chassis has been limited by a lack of efficient techniques for whole-genome cloning and engineering. Here, we demonstrate two approaches for cloning the 117-kb Phaeodactylum tricornutum chloroplast genome that have 90% to 100% efficiency when screening as few as 10 yeast (Saccharomyces cerevisiae) colonies following yeast assembly.
View Article and Find Full Text PDFWe have developed genetic tools for the atypical bacterium . is a member of the class , which lacks cell walls, has small genomes, and has limited metabolic capabilities, requiring many metabolites from their hosts. Several of these traits have facilitated the development of genome transplantation for some , consequently enabling the generation of synthetic cells.
View Article and Find Full Text PDFThe increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds.
View Article and Find Full Text PDFMetagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines.
View Article and Find Full Text PDFDiatoms are prominent and highly diverse microalgae in aquatic environments. Compared with other diatom species, Phaeodactylum tricornutum is an "atypical diatom" displaying three different morphotypes and lacking the usual silica shell. Despite being of limited ecological relevance, its ease of growth in the laboratory and well-known physiology, alongside the steady increase in genome-enabled information coupled with effective tools for manipulating gene expression, have meant it has gained increased recognition as a powerful experimental model for molecular research on diatoms.
View Article and Find Full Text PDFhigh resistance to various stressors combined with its ability to utilize sustainable carbon sources makes it an attractive bacterial chassis for synthetic biology and industrial bioproduction. However, to fully harness the capabilities of this microbe, further strain engineering and tool development are required. Methods for creating seamless genome modifications are an essential part of the microbial genetic toolkit to enable strain engineering.
View Article and Find Full Text PDFOne hurdle in the development of zebrafish models of human disease is the presence of multiple zebrafish orthologs resulting from whole genome duplication in teleosts. Mutations in inositol polyphosphate 5-phosphatase K (INPP5K) lead to a syndrome characterized by variable presentation of intellectual disability, brain abnormalities, cataracts, muscle disease, and short stature. INPP5K is a phosphatase acting at position 5 of phosphoinositides to control their homeostasis and is involved in insulin signaling, cytoskeletal regulation, and protein trafficking.
View Article and Find Full Text PDFThe development of fast, cheap and reliable methods to determine seroconversion against infectious agents is of great practical importance. In the context of the COVID-19 pandemic, an important issue is to study the rate of formation of the immune layer in the population of different regions, as well as the study of the formation of post-vaccination immunity in individuals after vaccination. Currently, the main method for this kind of research is enzyme immunoassay (ELISA, enzyme-linked immunosorbent assay).
View Article and Find Full Text PDFSocial media has become an important resource for discussing, sharing, and seeking information pertinent to rare diseases by patients and their families, given the low prevalence in the extraordinarily sparse populations. In our previous study, we identified prevalent topics from Reddit via topic modeling for cystic fibrosis (CF). While we were able to derive/access concerns/needs/questions of patients with CF, we observed challenges and issues with the traditional techniques of topic modeling, e.
View Article and Find Full Text PDFFungi are nature's recyclers, allowing for ecological nutrient cycling and, in turn, the continuation of life on Earth. Some fungi inhabit the human microbiome where they can provide health benefits, while others are opportunistic pathogens that can cause disease. Yeasts, members of the fungal kingdom, have been domesticated by humans for the production of beer, bread, and, recently, medicine and chemicals.
View Article and Find Full Text PDFis a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for .
View Article and Find Full Text PDFMetals and metal-based compounds comprise multifarious pharmaco-active and toxicological xenobiotics. From heavy metal toxicity to chemotherapeutics, the toxicokinetics of these compounds have both historical and modern-day relevance. Zebrafish have become an attractive model organism in elucidating pharmaco- and toxicokinetics in environmental exposure and clinical translation studies.
View Article and Find Full Text PDFhas become an attractive microbial platform for the study of extremophile biology and industrial bioproduction. To improve the genomic manipulation and tractability of this species, the development of tools for whole genome engineering and design is necessary. Here, we report the development of a simple and robust conjugation-based DNA transfer method from to , allowing for the introduction of stable, replicating plasmids expressing antibiotic resistance markers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
All life on Earth is unified by its use of a shared set of component chemical compounds and reactions, providing a detailed model for universal biochemistry. However, this notion of universality is specific to known biochemistry and does not allow quantitative predictions about examples not yet observed. Here, we introduce a more generalizable concept of biochemical universality that is more akin to the kind of universality found in physics.
View Article and Find Full Text PDFInkjet-printing technology enables the contactless deposition of functional materials such as conductive inks on surfaces, hence reducing contamination and the risk of substrate damage. In printed electronics, inkjet technology offers the significant advantage of controlling the volume of material deposited, and therefore the fine-tuning of the printed geometry, which is crucial for the performance of the final printed electronics. Inkjet printing of functional inks can be used to produce sensors to detect failure of mechanical structures such as carbon fiber reinforced composite (CFRC) components, instead of using attached sensors, which are subject to delamination.
View Article and Find Full Text PDFRoot hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus.
View Article and Find Full Text PDFObjectives: Spelling during medication ordering is prone to error, which can contribute to frustration, confusion, and, ultimately, errors. Typo correction can be utilized in an effort to mitigate the effects of misspellings by providing results even when no exact matches can be found. Although, typo correction can be beneficial in some scenarios, safety concerns have been raised when utilizing the functionality for medication ordering.
View Article and Find Full Text PDF