In the context of an EU-wide surveillance system for SARS-CoV-2 in wastewater, recommended by the European Commission, this study aims to provide scientific support to the adequacy of transport and storage conditions of samples both in terms of duration and samples temperature. Three laboratories in Slovenia, Cyprus and Estonia investigated the short-term, one-week, isochronous stability of wastewater samples by RT-qPCR based detection of SARS-CoV-2 genes. The results were tested for statistical significance to determine uncertainty of quantification and shelf-life, at testing temperatures of + 20 °C and - 20 °C, relative to reference at + 4 °C.
View Article and Find Full Text PDFThe removal of antibiotic resistance genes (ARGs) and taxon-specific markers, the bacterial community structure changes and the permanent inactivation of total bacteria including their antibiotic-resistant counterparts (ARB) in actual wastewater during a Membrane BioReactor (MBR) application followed by solar photo-Fenton oxidation at bench- and then pilot-scale under solar irradiation, were investigated. The presence of enterococci- and pseudomonad-specific taxon markers and of sul1 and ampC ARGs in the MBR effluent was confirmed, indicating the challenge of such processes, for the removal of biological molecules. On the other hand, >99 % reduction of all types of cultivable bacteria examined was observed after MBR treatment, with a 5-log reduction of E.
View Article and Find Full Text PDFThis study investigated the impact of bench-scale ozonation on the inactivation of total cultivable and antibiotic-resistant bacteria (faecal coliforms, Escherichia coli, Pseudomonas aeruginosa, Enterococcus spp., and total heterotrophs), and the reduction of gene markers (16S rRNA and intl1) and antibiotic resistance genes (qacEΔ1, sul1, aadA1 and dfrA1) indigenously present in wastewater effluents treated by membrane bioreactor (MBR) or conventional activated sludge (CAS). The Chick-Watson model-predicted ozone exposure (CT) requirements, showed that higher CT values were needed for CAS- than MBR-treated effluents to achieve a 3-log reduction of each microbial group, i.
View Article and Find Full Text PDFThe presence of antibiotic resistance in wastewater sparked a great interest in investigating the inactivation of antibiotic-resistant bacteria by disinfecting agents. In this study, the inactivation kinetics of multidrug-resistant E. coli and enterococci by an emerging environmentally-friendly disinfectant, peracetic acid (PAA), in wastewater and phosphate buffer at pH 6.
View Article and Find Full Text PDFThe presence of SARS-CoV-2 RNA in wastewater was first reported in March 2020. Over the subsequent months, the potential for wastewater surveillance to contribute to COVID-19 mitigation programmes has been the focus of intense national and international research activities, gaining the attention of policy makers and the public. As a new application of an established methodology, focused collaboration between public health practitioners and wastewater researchers is essential to developing a common understanding on how, when and where the outputs of this non-invasive community-level approach can deliver actionable outcomes for public health authorities.
View Article and Find Full Text PDFThe World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators.
View Article and Find Full Text PDFCOVID-19 is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of July 29 2020, more than 16,6 million cases have been reported in more than 188 countries/territories, leading to more than 659000 deaths. One of the main challenges facing health authorities has been testing for the virus on a sufficiently comprehensive scale.
View Article and Find Full Text PDFThere is increasing public concern regarding the fate of antibiotic resistance genes (ARGs) during wastewater treatment, their persistence during the treatment process and their potential impacts on the receiving water bodies. In this study, we used quantitative PCR (qPCR) to determine the abundance of nine ARGs and a class 1 integron associated integrase gene in 16 wastewater treatment plant (WWTP) effluents from ten different European countries. In order to assess the impact on the receiving water bodies, gene abundances in the latter were also analysed.
View Article and Find Full Text PDFUrban wastewater treatment plants (WWTPs) are among the main anthropogenic sources for the release of contaminants of emerging concern (CECs) into the environment, which can result in toxic and adverse effects on aquatic organisms and consequently on humans. Unfortunately, WWTPs are not designed to remove CECs and secondary (e.g.
View Article and Find Full Text PDFContaminants of emerging concern (CEC) discharged in effluents of wastewater treatment plants (WWTPs), not specifically designed for their removal, pose serious hazards to human health and ecosystems. Their impact is of particular relevance to wastewater disposal and re-use in agricultural settings due to CEC uptake and accumulation in food crops and consequent diffusion into the food-chain. This is the reason why the chemical CEC discussed in this review have been selected considering, besides recalcitrance, frequency of detection and entity of potential hazards, their relevance for crop uptake.
View Article and Find Full Text PDFAn upsurge in the study of antibiotic resistance in the environment has been observed in the last decade. Nowadays, it is becoming increasingly clear that urban wastewater is a key source of antibiotic resistance determinants, i.e.
View Article and Find Full Text PDFWastewater (WW) reuse for vegetable crops irrigation is regularly applied worldwide. Such a practice has been found to allow the uptake of pharmaceutical active compounds (PhACs) by plants and their subsequent entrance to the food web, representing an important alternative pathway for the exposure of humans to PhACs, with potential health implications. Herein we report the impacts of the long-term (three consecutive years) WW irrigation of a tomato crop with two differently treated effluents under real agricultural conditions, on (1) the soil concentration of selected PhACs (i.
View Article and Find Full Text PDFThe presence of pathogenic antibiotic-resistant bacteria in aquatic environments has become a health threat in the last few years. Their presence has increased due to the presence of antibiotics in wastewater effluents, which are not efficiently removed by conventional wastewater treatments. As a result there is a need to study the possible ways of removal of the mixtures of antibiotics present in wastewater effluents and the antibiotic-resistant bacteria, which may also spread the antibiotic resistance genes to other bacterial populations.
View Article and Find Full Text PDF