We previously demonstrated that reduced intrinsic electron transport chain (ETC) activity predicts and promotes sensitivity to the BCL-2 antagonist, venetoclax (Ven) in multiple myeloma (MM). Heme, an iron-containing prosthetic group, and metabolite is fundamental to maintaining ETC activity. Interrogation of the CD2 subgroup of MM from the CoMMpass trial (NCT01454297), which can be used as a proxy for Ven-sensitive MM (VS MM), shows reduced expression of the conserved heme biosynthesis pathway gene signature.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a complex clonal disorder characterized by clinical, genetic, metabolomic, and epigenetic heterogeneity resulting in the uncontrolled proliferation of aberrant blood-forming precursor cells. Despite advancements in the understanding of the genetic, metabolic, and epigenetic landscape of AML, it remains a significant therapeutic challenge. Functional profiling techniques, such as BH3 profiling (BP), gene expression profiling (GEP), proteomics, metabolomics, drug sensitivity/resistance testing (DSRT), CRISPR/Cas9, and RNAi screens offer valuable insights into the functional behavior of leukemia cells.
View Article and Find Full Text PDFAcute leukemia is a group of aggressive hematological malignancies, with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) being the most common types. The biology of acute leukemia involves complex genetic and epigenetic alterations that lead to uncontrolled cell proliferation and resistance to apoptosis. Mitochondrial dysfunction is a feature of acute leukemia that results in altered energy production, unregulated cell death pathways, and increased cancer cell survival.
View Article and Find Full Text PDFUnlabelled: In many cancers, mortality is associated with the emergence of relapse with multidrug resistance (MDR). Thus far, the investigation of cancer relapse mechanisms has largely focused on acquired genetic mutations. Using acute myeloid leukemia (AML) patient-derived xenografts (PDX), we systematically elucidated a basis of MDR and identified drug sensitivity in relapsed AML.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is clinically and genetically a heterogeneous disease characterized by clonal expansion of abnormal hematopoietic progenitors. Genomic approaches to precision medicine have been implemented to direct targeted therapy for subgroups of AML patients, for instance, IDH inhibitors for mutated patients, and FLT3 inhibitors with mutated patients. While next generation sequencing for genetic mutations has improved treatment outcomes, only a fraction of AML patients benefit due to the low prevalence of actionable targets.
View Article and Find Full Text PDFBackground: Quantitative Structure-Activity Relationship (QSAR) studies describing the correlations between biological activity as dependent parameters and physicochemical and structural descriptors, including topological indices (TIs) as independent parameters, play an important role in drug discovery research. The emergence of graph theory in exploring the structural attributes of the chemical space has led to the evolution of various TIs, which have made their way into drug discovery. The TIs are easy to compute compared to the empirical parameters, but they lack physiochemical interpretation, which is essential in understanding the mechanism of action.
View Article and Find Full Text PDF