Publications by authors named "Karan Veer"

Surface electromyography (sEMG) meets extensive applications in the field of prosthesis in the current period. The effectiveness of sEMG in prosthesis applications has been verified by numerous revolutionary developments and extensive research attempts. A large volume of research and literature works have explored and validated the vast use of these signals in prostheses as an assistive technology.

View Article and Find Full Text PDF

Biomedical signal and image processing is the study of the dynamic behavior of various bio-signals, which benefits academics and research. Signal processing is used to assess the behavior of analogue and digital signals for the assessment, reconfiguration, improved efficiency, extraction of features, and reorganization of patterns. This paper unveils hidden characteristic information about input signals using feature extraction methods.

View Article and Find Full Text PDF

Objective: Parkinson's disease is a pervasive neuro disorder that affects people's quality of life throughout the world. The unsatisfactory results of clinical rating scales open the door for more research. PD treatment using current biomarkers seems a difficult task.

View Article and Find Full Text PDF

Background: An uninterrupted channel of communication and control between the human brain and electronic processing units has led to an increased use of Brain Computer Interfaces (BCIs). This article attempts to present an all-encompassing review on BCI and the scientific advancements associated with it. The ultimate goal of this review is to provide a general overview of the BCI technology and to shed light on different aspects of BCIs.

View Article and Find Full Text PDF

This paper describes the utility of principal component analysis (PCA) in classifying upper limb signals. PCA is a powerful tool for analyzing data of high dimension. Here, two different input strategies were explored.

View Article and Find Full Text PDF

Dual-channel evaluation of surface electromyogram (SEMG) signals acquired from amputee subjects using computational techniques for classification of arm motions is presented in this study. SEMG signals were classified by the neural network (NN) and interpretation was done using statistical techniques to extract the effectiveness of the recorded signals. From the results, it was observed that there exists a calculative difference in amplitude gain across different motions and that SEMG signals have great potential to classify arm motions.

View Article and Find Full Text PDF

This paper presents the detailed evaluation and classification of Surface Electromyogram (SEMG) signals at different upper arm muscles for different operations. After acquiring the data from selected locations, interpretation of signals was done for the estimation of parameters using simulated algorithm. First, different types of arm operations were analysed; then statistical techniques were implemented for investigating muscle force relationships in terms of amplitude estimation.

View Article and Find Full Text PDF

Surface electromyogram (SEMG) is a complex signal and is influenced by several external factors/artifacts. The electromyogram signal from the stump of the subject is picked up through surface electrodes. It is amplified and artifacts are removed before digitising it in a controlled manner so that minimum signal loss occurs due to processing.

View Article and Find Full Text PDF

Here, the wavelet analysis has been investigated to improve the quality of myoelectric signal before use in prosthetic design. Effective Surface Electromyogram (SEMG) signals were estimated by first decomposing the obtained signal using wavelet transform and then analysing the decomposed coefficients by threshold methods. With the appropriate choice of wavelet, it is possible to reduce interference noise effectively in the SEMG signal.

View Article and Find Full Text PDF

In this work the signal acquiring technique, the analysis models and the design protocols of the prosthesis are discussed. The different methods to estimate the motion intended by the amputee from surface electromyogram (SEMG) signals based on time and frequency domain parameters are presented. The experiment proposed that the used techniques can help significantly in discriminating the amputee's motions among four independent activities using dual channel set-up.

View Article and Find Full Text PDF