Publications by authors named "Karan Bedi"

Activating mutations in STAT6 are common in Follicular Lymphoma (FL) and transformed FL and various other B cell lymphomas. Here, we report RNA-seq based gene expression data on normal human lymph node derived B lymphocytes (NBC; N = 6), and primary human FL WT (N = 11) or mutant (N = 4) for STAT6 before and after ex vivo stimulation with IL4. We found that STAT6 mutants result in broad based augmentation of IL4-induced gene expression.

View Article and Find Full Text PDF

Up to 90% of high-grade serous ovarian cancer (HGSC) patients will develop resistance to platinum-based chemotherapy, posing substantial therapeutic challenges due to a lack of universally druggable targets. Leveraging BenevolentAI's AI-driven approach to target discovery, we screened potential AI-predicted therapeutic targets mapped to unapproved tool compounds in patient-derived 3D models. This identified TNIK, which is modulated by NCB-0846, as a novel target for platinum-resistant HGSC.

View Article and Find Full Text PDF

We performed gene expression profiling of mRNA/cDNA isolated from N = 117 flow sorted CLL. We detected aberrant expression of the metabolic enzyme branched chain amino acid transferase (BCAT1) in CLL with del17p/TP53mut. Through extensive validation, we confirmed the highly preferential expression of BCAT1 in CLL with del17p/TP53mut (66%) or trisomy 12 (77%).

View Article and Find Full Text PDF

Steady-state levels of RNA transcripts are controlled by their rates of synthesis and degradation. Here we used nascent RNA Bru-seq and BruChase-seq to profile RNA dynamics across 16 human cell lines as part of ENCODE4 Deeply Profiled Cell Lines collection. We show that RNA turnover dynamics differ widely between transcripts of different genes and between different classes of RNA.

View Article and Find Full Text PDF

Arising as co-products of canonical gene expression, transcription-associated lincRNAs, such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and readthrough (RT) transcripts, are often regarded as byproducts of transcription, although they may be important for the expression of nearby genes. We identified regions of nascent expression of these lincRNA in 16 human cell lines using Bru-seq techniques, and found distinctly regulated patterns of PROMPT, eRNA, and RT transcription using the diverse biochemical approaches in the ENCODE4 deeply profiled cell lines collection. Transcription of these lincRNAs was influenced by sequence-specific features and the local or 3D chromatin landscape.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1) is a histone demethylase that promotes stemness and cell survival in cancers such as prostate cancer. Most prostate malignancies are adenocarcinomas with luminal differentiation. However, some tumors undergo cellular reprogramming to a more lethal subset termed neuroendocrine prostate cancer (NEPC) with neuronal differentiation.

View Article and Find Full Text PDF

The majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts.

View Article and Find Full Text PDF

Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-β to the activin A pathway. We found that TGF-β upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D.

View Article and Find Full Text PDF

Unlabelled: Lysine (K)-specific demethylase 6A (KDM6A) is a frequently mutated tumor suppressor gene in pancreatic ductal adenocarcinoma (PDAC). However, the impact of KDM6A loss on the PDAC tumor immune microenvironment is not known. This study used a genetically engineered, pancreas-specific Kdm6a knockout (KO) PDAC mouse model and human PDAC tissue samples to demonstrate that KDM6A loss correlates with increased tumor-associated neutrophils and neutrophil extracellular traps (NET) formation, which are known to contribute to PDAC progression.

View Article and Find Full Text PDF

The cyclin-dependent kinase CDK12 has garnered interest as a cancer therapeutic target as DNA damage response genes are particularly suppressed by loss of CDK12 activity. In this study, we assessed the acute effects of CDK12 inhibition on transcription and RNA processing using nascent RNA Bru-seq and BruChase-seq. Acute transcriptional changes were overall small after CDK12 inhibition but over 600 genes showed intragenic premature termination, including DNA repair and cell cycle genes.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified a neuron-specific regulator, MTMR5, which suppresses autophagy in neurons and is linked to impaired degradation of important proteins like TDP-43, relevant for various neurodegenerative disorders.
  • * By targeting MTMR5 and its partner MTMR2, they found a new way to enhance autophagy in neurons, which could lead to innovative therapies for diseases characterized by protein build-up.
View Article and Find Full Text PDF
Article Synopsis
  • KDM6A mutations are common in pancreatic ductal adenocarcinoma (PDAC) and play a significant role in tumor progression.
  • Studies showed that loss of KDM6A was linked to increased metastasis and a more aggressive form of PDAC, affecting pathways related to cell migration and invasion.
  • Targeting activin A, which is involved in the effects of KDM6A loss, could provide a new therapeutic approach for treating KDM6A-deficient PDAC.
View Article and Find Full Text PDF

Pre-mRNA splicing is carried out by the spliceosome and involves splice site recognition, removal of introns, and ligation of exons. Components of the spliceosome have been shown to interact with the elongating RNA polymerase II (RNAPII) which is thought to allow splicing to occur concurrently with transcription. However, little is known about the regulation and efficiency of co-transcriptional splicing in human cells.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the cancer stem cell (CSC) characteristics in diffuse intrinsic pontine glioma (DIPG) is crucial for overcoming treatment resistance and finding new therapies.
  • Patient-derived DIPG cells showed varying levels of aldehyde dehydrogenase (ALDH) and CD133, indicating a stem-like phenotype associated with increased cell growth and survival challenges.
  • Targeting the MAPK/PI3K/mTOR signaling pathway can inhibit tumor growth and metabolism in ALDH-positive tumors, suggesting potential for targeted therapy against the CSC traits in DIPG.
View Article and Find Full Text PDF

Processing bodies (PBs) and stress granules (SGs) are prominent examples of subcellular, membraneless compartments that are observed under physiological and stress conditions, respectively. We observe that the trimeric PB protein DCP1A rapidly (within ∼10 s) phase-separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue (over ∼100 s) with minimal effect on cell viability even after multiple cycles of osmotic perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly by homo-multimeric (valency ≥ 2) proteins across several cell types.

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNAs (miRNAs) play a crucial role in gene regulation, needing a solid grasp of how their primary transcripts are controlled.
  • The study utilized Bru-seq nascent RNA sequencing to analyze primary miRNA transcription units across 32 human cell lines, identifying a total of 1881 miRNA transcription units linked to established miRNA databases.
  • Findings revealed that many primary transcripts do not produce mature miRNAs, highlighting the complexity of miRNA regulation, which includes both transcriptional and post-transcriptional controls with novel transcription patterns identified.
View Article and Find Full Text PDF

Chromatin plays a critical role in organizing and protecting DNA. However, chromatin acts as an impediment for transcription and DNA repair. Histone modifications, such as H3K79 methylation, promote transcription and genomic stability by enhancing transcription elongation and by serving as landing sites for proteins involved in the DNA damage response.

View Article and Find Full Text PDF

Responses to targeted therapies frequently are brief, with patients relapsing with drug-resistant tumors. For oncogenic MEK and BRAF inhibition, drug resistance commonly occurs through activation of PI3K/AKT/mTOR signaling and immune checkpoint modulation, providing a robust molecular target for concomitant therapy. Here, we evaluated the efficacy of a bifunctional kinase inhibitor (ST-162) that concurrently targets MAPK and PI3K signaling pathways.

View Article and Find Full Text PDF

In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation.

View Article and Find Full Text PDF

Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation.

View Article and Find Full Text PDF

Our genome is protected from the introduction of mutations by high fidelity replication and an extensive network of DNA damage response and repair mechanisms. However, the expression of our genome, via RNA and protein synthesis, allows for more diversity in translating genetic information. In addition, the splicing process has become less stringent over evolutionary time allowing for a substantial increase in the diversity of transcripts generated.

View Article and Find Full Text PDF

Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts.

View Article and Find Full Text PDF

BruUV-seq utilizes UV light to introduce transcription-blocking DNA lesions randomly in the genome prior to bromouridine-labeling and deep sequencing of nascent RNA. By inhibiting transcription elongation, but not initiation, pre-treatment with UV light leads to a redistribution of transcription reads resulting in the enhancement of nascent RNA signal towards the 5'-end of genes promoting the identification of transcription start sites (TSSs). Furthermore, transcripts associated with arrested RNA polymerases are protected from 3'-5' degradation and thus, unstable transcripts such as putative enhancer RNA (eRNA) are dramatically increased.

View Article and Find Full Text PDF

The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1) covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7161ieln2l8pfgm7cbvgmj8e1a6o6mp2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once