As membrane-mediated antibiotic resistance continues to evolve in Gram-positive bacteria, the development of new approaches to elucidate the membrane properties involved in antibiotic resistance has become critical. Membrane vesicles (MVs) secreted by the cytoplasmic membrane of Gram-positive bacteria contain native components, preserving lipid and protein diversity, nucleic acids, and sometimes virulence factors. Thus, MV-derived membrane platforms present a great model for Gram-positive bacterial membranes.
View Article and Find Full Text PDFThe use of bacteriophages, viruses that specifically infect bacteria, as antibiotics has become an area of great interest in recent years as the effectiveness of conventional antibiotics recedes. The detection of phage interactions with specific bacteria in a rapid and quantitative way is key for identifying phages of interest for novel antimicrobials. Outer membrane vesicles (OMVs) derived from Gram-negative bacteria can be used to make supported lipid bilayers (SLBs) and therefore membrane models that contain naturally occurring components of the bacterial outer membrane.
View Article and Find Full Text PDFAs the threat of antibiotic resistance increases, there is a particular focus on developing antimicrobials against pathogenic bacteria whose multidrug resistance is especially entrenched and concerning. One such target for novel antimicrobials is the ATP-binding cassette (ABC) transporter MsbA that is present in the plasma membrane of Gram-negative pathogenic bacteria where it is fundamental to the survival of these bacteria. Supported lipid bilayers (SLBs) are useful in monitoring membrane protein structure and function since they can be integrated with a variety of optical, biochemical, and electrochemical techniques.
View Article and Find Full Text PDFThe rise of antibiotic resistance is a growing worldwide human health issue, with major socioeconomic implications. An understanding of the interactions occurring at the bacterial membrane is crucial for the generation of new antibiotics. Supported lipid bilayers (SLBs) made from reconstituted lipid vesicles have been used to mimic these membranes, but their utility has been restricted by the simplistic nature of these systems.
View Article and Find Full Text PDFAntibiotic resistance is a growing global health concern due to the decreasing number of antibiotics available for therapeutic use as more drug-resistant bacteria develop. Changes in the membrane properties of Gram-negative bacteria can influence their response to antibiotics and give rise to resistance. Thus, understanding the interactions between the bacterial membrane and antibiotics is important for elucidating microbial membrane properties to use for designing novel antimicrobial drugs.
View Article and Find Full Text PDFOrganophosphorus nerve agents (NAs) are the most lethal chemical warfare agents and have been used by state and non-state actors since their discovery in the 1930s. They covalently modify acetylcholinesterase, preventing the breakdown of acetylcholine (ACh) with subsequent loss of synaptic transmission, which can result in death. Despite the availability of several antidotes for OPNA exposure, none directly targets the nicotinic acetylcholine receptor (nAChR) mediated component of toxicity.
View Article and Find Full Text PDF