Publications by authors named "Karama Hamdi"

The functional characterization of PR10 proteins has been extensively studied in many plant species. However, little is known about the role of TdPR10 in the response of durum wheat ( Desf.) to stress.

View Article and Find Full Text PDF

In the dry and hot Mediterranean regions wheat is greatly susceptible to several abiotic stresses such as extreme temperatures, drought, and salinity, causing plant growth to decrease together with severe yield and quality losses. Thus, the identification of gene sequences involved in plant adaptation to such stresses is crucial for the optimization of molecular tools aimed at genetic selection and development of stress-tolerant varieties. Abscisic acid, stress, ripening-induced () genes act in the protection mechanism against high salinity and water deficit in several plant species.

View Article and Find Full Text PDF

The ASR protein family has been discovered thirty years ago in many plant species and is involved in the tolerance of various abiotic stresses such as dehydration, salinity and heat. Despite its importance, nothing is known about the conserved ABA-Water Deficit Stress Domain (ABA-WDS) of the ASR gene family. In this study, we characterized two ABA-WDS domains, isolated from durum wheat (TtABA-WDS) and barley (HvABA-WDS).

View Article and Find Full Text PDF

In semiarid Mediterranean agroecosystems, drought and salinity are the main abiotic stresses hampering wheat productivity and yield instability. Abscisic acid, stress, and ripening (ASR) are small plant proteins and play important roles in different biological processes. In the present study, the ASR1 gene was isolated and characterized for the first time from durum wheat ( L.

View Article and Find Full Text PDF

Abscisic acid (ABA), stress and ripening (ASR) proteins are plant-specific proteins involved in plant response to multiple abiotic stresses. We previously isolated the ASR genes and cDNAs from durum wheat (TtASR1) and barley (HvASR1). Here, we show that HvASR1 and TtASR1 are consistently predicted to be disordered and further confirm this experimentally.

View Article and Find Full Text PDF