Publications by authors named "Karam Nashwan Al-Milaji"

Unique properties of one-dimensional assemblies of particles have attracted great attention during the past decades, particularly with respect to the potential for anisotropic magnetism. Patterned films can be created using inkjet printing; however, drying of particle-laden colloidal droplets on solid surfaces is usually accompanied by the well-known coffee-ring effect, deteriorating both the uniformity and resolution of the printed configurations. This study examines the effect of externally applied magnetic field on particle deposition patterns.

View Article and Find Full Text PDF

Particle deposition and assembly in the vicinity of contact lines of evaporative sessile droplets have been intensively investigated during the past decade. Yet little is known about particle arrangement in the contact-line region initiated by the self-assembled particles at the air-liquid interface and how the particle pinning behaves differently compared with that when particles are transported from the bulk of the sessile droplet to the three-phase contact line. We utilized the dual-droplet inkjet printing process to elucidate the versatility in particle deposition and assembly generated near the contact-line region and demonstrated the influence of such printing technique on particle pinning at the contact line after solvent evaporation.

View Article and Find Full Text PDF

Hypothesis: Interfacial self-assembly has been demonstrated as a powerful driving mechanism for creating various nanostructured assemblies. In this work, we employed a dual-droplet printing process and interfacial self-assembly mechanism to produce deposits with controlled assembly structures of colloidal nanoparticles. We hypothesize that pH modulation of the droplet will influence the interfacial self-assembly through the multibody interactions, e.

View Article and Find Full Text PDF