Publications by authors named "Karam Khorani"

Recent studies have highlighted neurons and their associated Schwann cells (SCs) as key regulators of cancer development. However, the mode of their interaction with tumor cells or other components of the tumor microenvironment (TME) remains elusive. We established an SC-related 43-gene set as a surrogate for peripheral nerves in the TME.

View Article and Find Full Text PDF

Perineural invasion is a prevalent pathological finding in head and neck squamous cell carcinoma and a risk factor for unfavorable survival. An adequate diagnosis of perineural invasion by pathologic examination is limited due to the availability of tumor samples from surgical resection, which can arise in cases of definitive nonsurgical treatment. To address this medical need, we established a random forest prediction model for the risk assessment of perineural invasion, including occult perineural invasion, and characterized distinct cellular and molecular features based on our new and extended classification.

View Article and Find Full Text PDF

Purpose: Identification of molecularly-defined cancer subgroups and targeting tumor-specific vulnerabilities have a strong potential to improve treatment response and patient outcomes but remain an unmet challenge of high clinical relevance, especially in head and neck squamous cell carcinoma (HNSC).

Experimental Design: We established a UCHL1-related gene set to identify and molecularly characterize a UCHL1-related subgroup within TCGA-HNSC by integrative analysis of multi-omics data. An extreme gradient boosting model was trained on TCGA-HNSC based on GSVA scores for gene sets of the MSigDB to robustly predict UCHL1-related cancers in other solid tumors and cancer cell lines derived thereof.

View Article and Find Full Text PDF

Recent studies highlighted SOX2 and SOX9 as key determinants for cancer-cell plasticity and demonstrated that cisplatin-induced adaptation in oral squamous cell carcinoma (SCC) is acquired by an inverse regulation of both transcription factors. However, the association between SOX2/SOX9-related genetic programs with risk factors and genetic or epigenetic alterations in primary head and neck SCC (HNSCC), and their prognostic value is largely unknown.Here, we identified differentially-expressed genes (DEG) related to SOX2 and SOX9 transcription in The Cancer Genome Atlas (TCGA)-HNSC, which enable clustering of patients into groups with distinct clinical features and survival.

View Article and Find Full Text PDF