Background: Heart failure (HF) is a global health challenge affecting millions, with significant variations in patient characteristics and outcomes based on ejection fraction. This study aimed to differentiate between HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF) with respect to patient characteristics, risk factors, comorbidities, and clinical outcomes, incorporating advanced machine learning models for mortality prediction.
Methodology: The study included 1861 HF patients from 21 centers in Jordan, categorized into HFrEF (EF <40%) and HFpEF (EF ≥ 50%) groups.
Background: Heart failure (HF) is a common final pathway of various insults to the heart, primarily from risk factors including diabetes mellitus (DM) type 2. This study analyzed the clinical characteristics of HF in a Jordanian population with a particular emphasis on the relationship between DM and HF.
Methods: This prospective study used the Jordanian Heart Failure Registry (JoHFR) data.