Microproteins (MPs) are a potentially rich source of uncharacterized metabolic regulators. Here, we use ribosome profiling (Ribo-seq) to curate 3,877 unannotated MP-encoding small ORFs (smORFs) in primary brown, white, and beige mouse adipocytes. Of these, we validated 85 MPs by proteomics, including 33 circulating MPs in mouse plasma.
View Article and Find Full Text PDFFibroblast growth factor 21 (FGF21) induces weight loss in mouse, monkey, and human studies. In mice, FGF21 is thought to cause weight loss by stimulating thermogenesis, but whether FGF21 increases energy expenditure (EE) in primates is unclear. Here, we explore the transcriptional response and gene networks active in adipose tissue of rhesus macaques following FGF21-induced weight loss.
View Article and Find Full Text PDFBackground: We and others have previously shown that alterations in the mammalian gut microbiome are associated with diet, notably early life exposure to a maternal high fat diet (HFD). Here, we aimed to further these studies by examining alterations in the gut microbiome of juvenile Japanese macaques (Macaca fuscata) that were exposed to a maternal HFD, weaned onto a control diet, and later supplemented with a synbiotic comprised of psyllium seed and Enterococcus and Lactobacillus species.
Results: Eighteen month old offspring (n = 7) of 36% HFD fed dams were fed a control (14% fat) diet post weaning, then were synbiotic supplemented for 75 days and longitudinal stool and serum samples were obtained.
Am J Physiol Regul Integr Comp Physiol
August 2017
Maternal high-fat-diet (HFD) consumption during pregnancy decreased fetal body weight and impacted development of hypothalamic melanocortin neural circuitry in nonhuman primate offspring. We investigated whether these impairments during gestation persisted in juvenile offspring and examined the interaction between maternal and early postnatal HFD consumption. Adult dams consumed either a control diet (CTR; 15% calories from fat) or a high-saturated-fat diet (HFD; 37% calories from fat) during pregnancy.
View Article and Find Full Text PDFMaternal obesity contributes to an increased risk of lifelong morbidity and mortality for both the mother and her offspring. In order to better understand the molecular mechanisms underlying these risks, we previously established and extensively characterized a primate model in Macaca fuscata (Japanese macaque). In prior studies we have demonstrated that a high fat, caloric dense maternal diet structures the offspring's epigenome, metabolome, and intestinal microbiome.
View Article and Find Full Text PDFBackground And Objective: Atherosclerosis is both a chronic inflammatory disease and a lipid metabolism disorder. C/EBPβ is well documented for its role in the development of hematopoietic cells and integration of lipid metabolism. However, C/EBPβ's role in atherosclerotic progression has not been examined.
View Article and Find Full Text PDFObjective: To utilize a nonhuman primate model to examine the impact of maternal high-fat diet (HFD) consumption and pre-pregnancy obesity on offspring intake of palatable food and to examine whether maternal HFD consumption impaired development of the dopamine system, critical for the regulation of hedonic feeding.
Methods: The impact of exposure to maternal HFD and obesity on offspring consumption of diets of varying composition was assessed after weaning. The influence of maternal HFD consumption on the development of the prefrontal cortex-dopaminergic system at 13 months of age was also examined.
Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period.
View Article and Find Full Text PDFThe intestinal microbiome is a unique ecosystem and an essential mediator of metabolism and obesity in mammals. However, studies investigating the impact of the diet on the establishment of the gut microbiome early in life are generally lacking, and most notably so in primate models. Here we report that a high-fat maternal or postnatal diet, but not obesity per se, structures the offspring's intestinal microbiome in Macaca fuscata (Japanese macaque).
View Article and Find Full Text PDFThe origins of nonalcoholic fatty liver disease (NAFLD) may lie in early intrauterine exposures. Here we examined the maternal response to chronic maternal high-fat (HF) diet and the impact of postweaning healthy diet on mechanisms for NAFLD development in juvenile nonhuman primate (NHP) offspring at 1 year of age. Pregnant females on HF diet were segregated as insulin resistant (IR; HF+IR) or insulin sensitive (IS; HF+IS) compared with control (CON)-fed mothers.
View Article and Find Full Text PDFDrugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBPβ expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice.
View Article and Find Full Text PDFStrong evidence exists for a link between chronic low level inflammation and dietary-induced insulin resistance; however, little is known about the transcriptional networks involved. Here we show that high fat diet (HFD) or saturated fatty acid exposure directly activates CCAAT/enhancer-binding protein β (C/EBPβ) protein expression in liver, adipocytes, and macrophages. Global C/EBPβ deletion prevented HFD-induced inflammation and surprisingly increased mitochondrial gene expression in white adipose tissue along with brown adipose tissue markers PRDM16, CIDEa, and UCP1, consistent with a resistance to HFD-induced obesity.
View Article and Find Full Text PDF