Publications by authors named "Karagyaur M"

Hyperlipidemia is a major risk factor for vascular lesions in diabetes mellitus and other metabolic disorders, although its basis remains poorly understood. One of the key pathogenetic events in this condition is mitochondrial dysfunction associated with the opening of the mitochondrial permeability transition (MPT) pore, a drop in the membrane potential, and ROS overproduction. Here, we investigated the effects of bongkrekic acid and carboxyatractyloside, a potent blocker and activator of the MPT pore opening, respectively, acting through direct interaction with the adenine nucleotide translocator, on the progression of mitochondrial dysfunction in mouse primary lung endothelial cells exposed to elevated levels of palmitic acid.

View Article and Find Full Text PDF

Introduction: Impaired function of brain morphogenic genes is considered one of the predisposing factors for the manifestation of psychiatric and cognitive disorders, such as paranoid schizophrenia (SCZ) and major depressive disorder (MDD). Identification of such genes (genes of neurotrophic factors and guidance molecules among them) and their deleterious genetic variants serves as a key to diagnosis, prevention, and possibly treatment of such disorders. In this study, we have examined the prevalence of genomic variants in brain morphogenic genes in individuals with SCZ and MDD within a Russian population.

View Article and Find Full Text PDF

Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules.

View Article and Find Full Text PDF

Ischemic and hemorrhagic strokes, traumatic brain injury, bacterial and viral encephalitis, toxic and metabolic encephalopathies are very different pathologies. But, they have much more in common than it might seem at first glance. In this review, the authors propose to consider these brain pathologies from the point of view of the unity of their pathogenetic mechanisms and approaches to therapy.

View Article and Find Full Text PDF

Multipotent mesenchymal stromal cells (MSCs) integrate hormone and neuromediator signaling to coordinate tissue homeostasis, tissue renewal and regeneration. To facilitate the investigation of MSC biology, stable immortalized cell lines are created (e.g.

View Article and Find Full Text PDF

Hypertension is one of the major life-threatening complications of obesity. Recently adipose multipotent mesenchymal stromal cells (MSCs) were implicated to the pathogenesis of obesity-associated hypertension. These cells amplify noradrenaline-induced vascular cell contraction via cAMP-mediated signaling pathway.

View Article and Find Full Text PDF

Non-coding RNA (ncRNAs) genes have attracted increasing attention in recent years due to their widespread involvement in physiological and pathological processes and regulatory networks. The study of the function and molecular partners of ncRNAs opens up opportunities for the early diagnosis and treatment of previously incurable diseases. However, the classical "loss-of-function" approach in ncRNA function analysis is challenged due to some specific issues.

View Article and Find Full Text PDF

In modern science, immortalized cells are not only a convenient tool in fundamental research, but they are also increasingly used in practical medicine. This happens due to their advantages compared to the primary cells, such as the possibility to produce larger amounts of cells and to use them for longer periods of time, the convenience of genetic modification, the absence of donor-to-donor variability when comparing the results of different experiments, etc. On the other hand, immortalization comes with drawbacks: possibilities of malignant transformation and/or major phenotype change due to genetic modification itself or upon long-term cultivation appear.

View Article and Find Full Text PDF
Article Synopsis
  • Gene editing tools, especially CRISPR/Cas9, are crucial for studying cell biology and translating genomic data into practical uses.
  • This review compares CRISPR/Cas9 with older methods like Zinc Finger Proteins and TALEN, highlighting its advantages in agricultural and veterinary contexts.
  • It discusses successful and unsuccessful applications of CRISPR/Cas9 in modifying organisms, and explores future possibilities in vaccine development, disease resistance, and improving traits.
View Article and Find Full Text PDF

Prolonged hyperglycemia related to diabetes and its complications leads to multiple cellular disorders, the central one being the dysfunction of mitochondria. Voltage-dependent anion channels (VDAC) of the outer mitochondrial membrane control the metabolic, ionic, and energy cross-talk between mitochondria and the rest of the cell and serve as the master regulators of mitochondrial functions. Here, we have investigated the effect of pharmacological suppression of VDAC1 by the newly developed inhibitor of its oligomerization, VBIT-4, in the primary culture of mouse lung endotheliocytes and downregulated expression of VDAC1 in human skin fibroblasts on the progression of mitochondrial dysfunction upon hyperglycemic stress.

View Article and Find Full Text PDF

Intracerebral hemorrhage is an unmet medical need that often leads to the disability and death of a patient. The lack of effective treatments for intracerebral hemorrhage makes it necessary to look for them. Previously, in our proof-of-concept study (Karagyaur M et al.

View Article and Find Full Text PDF

The etiology and pathogenesis of schizophrenia remain poorly understood, but it has been established that the contribution of heredity to the development of the disease is about 80-85%. Over the past decade, significant progress has been made in the search for specific genetic variants associated with the development of schizophrenia. The review discusses the results of modern large-scale studies aimed at searching for genetic associations with schizophrenia: genome-wide association studies (GWAS) and the search for rare variants (mutations or copy number variations, CNV), including the use of whole exome sequencing.

View Article and Find Full Text PDF

Hypertension is a major risk factor for cardiovascular diseases, such as strokes and myocardial infarctions. Nearly 70% of hypertension onsets in adults can be attributed to obesity, primarily due to sympathetic overdrive and the dysregulated renin-angiotensin system. Sympathetic overdrive increases vasoconstriction via α1-adrenoceptor activation on vascular cells.

View Article and Find Full Text PDF

The present study evaluates the cytotoxicity of a previously synthesized conjugate of betulinic acid (BA) with the penetrating cation F16 on breast adenocarcinoma (MCF-7) and human fibroblast (HF) cell lines, and also shows the mechanism underlying its membranotropic action. It was confirmed that the conjugate exhibits higher cytotoxicity compared to native BA at low doses also blocking the proliferation of both cell lines and causing cell cycle arrest in the G/G phase. We show that the conjugate indeed has a high potential for accumulation in mitochondria, being visualized in these organelles, which is most pronounced in cancer cells.

View Article and Find Full Text PDF

Modern society faces many biomedical challenges that require urgent solutions. Two of the most important include the elucidation of mechanisms of socially significant diseases and the development of prospective drug treatments for these diseases. Experimental cell models are a convenient tool for addressing many of these problems.

View Article and Find Full Text PDF

In this study, we developed a novel Cre/lox71-based system for the controlled transient expression of target genes. We used the bacteriophage P1 Cre recombinase, which harbors a short, highly specific DNA-binding site and does not have endogenous binding sites within mouse or human genomes. Fusing the catalytically inactive form of Cre recombinase and the VP64 transactivation domain (VP16 tetramer), we constructed the artificial transcription factor Cre-VP64.

View Article and Find Full Text PDF

Urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored receptor of urokinase (uPA), which is involved in brain development, nerve regeneration, wound healing and tissue remodeling. We have recently shown that , which encodes uPAR, is an early response gene in murine brain. Assumingly, diverse functions of might be attributed to hypothetical, unidentified microRNAs encoded within introns of the gene.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is a classic neuroprotective and pro-regenerative factor in peripheral and central nervous tissue. Its ability to stimulate the restoration of damaged nerve and brain tissue after ischemic stroke and intraventricular hemorrhage has been demonstrated. However, the current concept of regeneration allows us to assert that one factor, even if essential, cannot be the sole contributor to this complex biological process.

View Article and Find Full Text PDF

The HaCaT line of immortalized non-tumor cells is a popular model of keratinocytes used for dermatological studies, in the practice of toxicological tests, and in the study of skin allergic reactions. These cells maintain a stable keratinocyte phenotype, do not require specific growth factors during cultivation, and respond to keratinocyte differentiation stimuli. HaCaT cells bear two mutant p53 alleles - R282Q and H179Y.

View Article and Find Full Text PDF

uPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks.

View Article and Find Full Text PDF

Multipotent mesenchymal stromal cells (MSCs) are considered to be critical contributors to injured tissue repair and regeneration, and MSC-based therapeutic approaches have been applied to many peripheral and central neurologic disorders. It has been demonstrated that the beneficial effects of MSC are mainly mediated by the components of their secretome. In the current study, we have explored the neuroprotective potential of the MSC secretome in a rat model of intracerebral hemorrhage and shown that a 10-fold concentrated secretome of human MSC and its combination with the brain-derived neurotrophic factor (BDNF) provided a better survival and neurological outcome of rats within 14 days of intracerebral hemorrhage compared to the negative (non-treated) and positive (BDNF) control groups.

View Article and Find Full Text PDF
Article Synopsis
  • - Multipotent mesenchymal stem/stromal cells (MSC) can self-organize, which is crucial for tissue regeneration, and this ability has been utilized in tissue engineering through cell sheets (CS).
  • - The study explored MSC self-organization in CS, focusing on how the Rho-GTPase pathway influences cell density distribution and differentiation towards bone and cartilage rather than fat cells.
  • - RNA-sequencing revealed key transcriptional changes during MSC differentiation, linking the self-organization process to commitment and cell fate via specific molecular pathways like ROCK1/2 and SREBP, regulated by AMP kinase.
View Article and Find Full Text PDF

Modern biomedical science still experiences a significant need for easy and reliable sources of human cells. They are used to investigate pathological processes underlying disease, conduct pharmacological studies, and eventually applied as a therapeutic product in regenerative medicine. For decades, the pool of adult mesenchymal stem/stromal cells (MSCs) remains a promising source of stem and progenitor cells.

View Article and Find Full Text PDF

Gene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated.

View Article and Find Full Text PDF

Obesity is a key health problem and is associated with a high risk of type 2 diabetes and other metabolic diseases. Increased weight as well as dysregulation of adipocyte homeostasis are the main drivers of obesity. Pathological adipogenesis plays a central role in obesity-related complications such as type 2 diabetes, hypertension and others.

View Article and Find Full Text PDF