Parkinson's disease (PD) is one of the most common progressive neurodegenerative diseases. An important feature of the disease is its long latent period, which necessitates search for prognostic biomarkers. One method of identifying biomarkers of PD is to study changes in gene expression in peripheral blood of the patients in early stages of the disease and have not been treated.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common human neurodegenerative diseases. Belated diagnoses of PD and late treatment are caused by its elongated prodromal phase. Thus, searching for new candidate genes participating in the development of the pathological process in the early stages of the disease in patients who have not yet received therapy is relevant.
View Article and Find Full Text PDFManual motor performance declines with age, but the extent to which age influences the acquisition of new skills remains a topic of debate. Here, we examined whether older healthy adults show less training-dependent performance improvements during a single session of a bimanual pinch task than younger adults. We also explored whether physical and cognitive factors, such as grip strength or motor-cognitive ability, are associated with performance improvements.
View Article and Find Full Text PDFIn the last decade, organic-inorganic hybrid halide perovskite materials have developed into a very large research area in photovoltaics and optoelectronics as promising light harvesters. Lead-free double perovskites have recently been investigated as an environmentally friendly alternative to the lead-containing compositions. However, lead-free organic-inorganic hybrid halide double perovskites have so far rarely been produced due to a certain complexity in their synthesis.
View Article and Find Full Text PDFPost-acquisition correction of NMR spectra is an important part of NMR spectroscopy that enables refined NMR spectra to be obtained, clean from undesirable out-phasing, broadening and noising. We describe analytical and numerical mathematical methods for post-acquisition correction of NMR spectra distorted by static and dynamic magnetic field inhomogeneity caused by imperfections of main superconducting coils and the cold head operation, typical for cryogen-free magnets. For the dynamic inhomogeneity, we apply a variant of the general reference deconvolution method, complemented with our mathematical analysis of spectral parameters.
View Article and Find Full Text PDFMany activities of daily living require quick shifts between symmetric and asymmetric bimanual actions. Bimanual motor control has been mostly studied during continuous repetitive tasks, while little research has been carried out in experimental settings requiring dynamic changes in motor output generated by both hands. Here, we performed functional magnetic resonance imaging (MRI) while healthy volunteers performed a visually guided, bimanual pinch force task.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
June 2023
We show that the temporal magnetic field distortion generated by the Cold Head operation can be removed and high quality Solid-State Magic Angle Spinning NMR results can be obtained with a cryogen-free magnet. The compact design of the cryogen-free magnets allows for the probe to be inserted either from the bottom (as in most NMR systems) or, more conveniently, from the top. The magnetic field settling time can be made as short as an hour after a field ramp.
View Article and Find Full Text PDFBackground: Many patients do not fully regain motor function after ischemic stroke. Transcranial direct current stimulation (TDCS) targeting the motor cortex may improve motor outcome as an add-on intervention to physical rehabilitation. However, beneficial effects on motor function vary largely among patients within and across TDCS trials.
View Article and Find Full Text PDFThis study was motivated by the well-known problem of the differential diagnosis of Parkinson's disease and essential tremor using the phase shift between the tremor signals in the antagonist muscles of patients. Different phase shifts are typical for different diseases; however, it remains unclear how this parameter can be used for clinical diagnosis. Neurophysiological papers have reported different estimations of the accuracy of this parameter, which varies from insufficient to 100%.
View Article and Find Full Text PDFSingle-pulse transcranial magnetic stimulation (TMS) of the precentral hand representation (M1) can elicit indirect waves in the corticospinal tract at a periodicity of ∼660 Hz, called I-waves. These descending volleys are produced by transsynaptic excitation of fast-conducting corticospinal axons in M1. Paired-pulse TMS can induce short-interval intracortical facilitation (SICF) of motor evoked potentials (MEPs) at interpulse intervals that match I-wave periodicity.
View Article and Find Full Text PDFTranscranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization.
View Article and Find Full Text PDFAnodal transcranial direct current stimulation (aTDCS) of primary motor hand area (M1-HAND) can enhance corticomotor excitability, but it is still unknown which current intensity produces the strongest effect on intrinsic neural firing rates and synaptic activity. Magnetic resonance imaging (MRI) combined with pseudo-continuous Arterial Spin Labeling (pcASL MRI) can map regional cortical blood flow (rCBF). The measured rCBF signal is sensitive to regional changes in neuronal activity due to neurovascular coupling.
View Article and Find Full Text PDFPurpose: Fatigue is frequent in adults with cerebral palsy (CP) and it is unclear whether this is due to altered corticospinal drive. We aimed to compare changes in corticospinal drive following sustained muscle contractions in adults with CP and neurologically intact (NI) adults.
Methods: Fourteen adults with CP [age 37.
Sensors (Basel)
July 2021
A statistical method for exploratory data analysis based on 2D and 3D area under curve (AUC) diagrams was developed. The method was designed to analyze electroencephalogram (EEG), electromyogram (EMG), and tremorogram data collected from patients with Parkinson's disease. The idea of the method of wave train electrical activity analysis is that we consider the biomedical signal as a combination of the wave trains.
View Article and Find Full Text PDFHuman dexterous motor control improves from childhood to adulthood, but little is known about the changes in cortico-cortical communication that support such ontogenetic refinement of motor skills. To investigate age-related differences in connectivity between cortical regions involved in dexterous control, we analyzed electroencephalographic data from 88 individuals (range 8-30 years) performing a visually guided precision grip task using dynamic causal modelling and parametric empirical Bayes. Our results demonstrate that bidirectional coupling in a canonical 'grasping network' is associated with precision grip performance across age groups.
View Article and Find Full Text PDFBackground: Electroencephalography (EEG) and single-pulse transcranial magnetic stimulation (spTMS) of the primary motor hand area (M1-HAND) have been combined to explore whether the instantaneous expression of pericentral mu-rhythm drives fluctuations in corticomotor excitability, but this line of research has yielded diverging results.
Objectives: To re-assess the relationship between the mu-rhythm power expressed in left pericentral cortex and the amplitude of motor potentials (MEP) evoked with spTMS in left M1-HAND.
Methods: 15 non-preselected healthy young participants received spTMS to the motor hot spot of left M1-HAND.
Background: Transcranial direct current stimulation (TDCS) targeting the primary motor hand area (M1-HAND) may induce lasting shifts in corticospinal excitability, but after-effects show substantial inter-individual variability. Functional magnetic resonance imaging (fMRI) can probe after-effects of TDCS on regional neural activity on a whole-brain level.
Objective: Using a double-blinded cross-over design, we investigated whether the individual change in corticospinal excitability after TDCS of M1-HAND is associated with changes in task-related regional activity in cortical motor areas.
Unlabelled: One of the research directions of the so-called non-motor manifestations of Parkinson's disease (PD) is associated with the assessment of structural and functional changes in the organ of vision. An assessment of the state of thin non-myelinated corneal nerve fibers (CNF) in Parkinson's disease seems to be promising considering the neurodegenerative nature of the disease, as well as the possibility of objective intravital assessment of both functional and structural changes in CNF.
Purpose: To analyze the changes in the course and structure of corneal nerve fibers in the early stages of Parkinson's disease based on an objective algorithm of corneal confocal microscopy (CCM).
: Motor skill learning already triggers the functional reorganization of regional brain activity after short periods of training. Recent studies suggest that microstructural change may emerge at similar timescales, but the spatiotemporal profiles of functional and structural plasticity have rarely been traced in parallel. Recently, we demonstrated that 5 days of endoscopic skill training induces changes in task-related brain activity in the ventral premotor cortex (PMv) and other areas of the frontoparietal grasping network.
View Article and Find Full Text PDFNon-invasive transcranial stimulation of cerebellum and primary motor cortex (M1) has been shown to enhance motor learning. However, the mechanisms by which stimulation improves learning remain largely unknown. Here, we sought to shed light on the neural correlates of transcranial direct current stimulation (tDCS) during motor learning by simultaneously recording functional magnetic resonance imaging (fMRI).
View Article and Find Full Text PDFVisuomotor adaptation (VMA) is a form of motor learning essential for performing day to day routines. Theoretical models and empirical evidence suggest a specific cortico-striato-cerebellar loop that mediates early and late learning in VMA. Here, we investigated dynamic changes in neural activity and connectivity when learning a novel visuomotor rotation using fMRI.
View Article and Find Full Text PDFThe control of ankle muscle force is an integral component of walking and postural control. Aging impairs the ability to produce force steadily and accurately, which can compromise functional capacity and quality of life. Here, we hypothesized that reduced force control in older adults would be associated with altered cortico-cortical communication within a network comprising the primary motor area (M1), the premotor cortex (PMC), parietal, and prefrontal regions.
View Article and Find Full Text PDFWe employed dual-site TMS to test whether ipsilateral functional premotor-motor connectivity is altered in relapsing-remitting Multiple Sclerosis (RR-MS) and is related to central fatigue. Twelve patients with RR-MS and 12 healthy controls performed a visually cued Pinch-NoPinch task with their right hand. During the reaction time (RT) period of Pinch and No-Pinch trials, single-site TMS was applied to the left primary motor cortex (M1) or dual-site TMS was applied to the ipsilateral dorsal premotor cortex (PMd) and to M1.
View Article and Find Full Text PDFThe left inferior frontal gyrus (IFG) is a key region for language comprehension and production. Previous studies point to a preferential involvement of left anterior IFG (aIFG) in lexical and semantic processes, while the posterior IFG (pIFG) has been implicated in supporting syntactic and phonological processes. Here we used focal neuronavigated transcranial magnetic stimulation (TMS) to probe the functional involvement of left IFG in lexical and grammatical processing at the sentence level.
View Article and Find Full Text PDF