Publications by authors named "Kara Rzasa"

Swarming motility in pseudomonads typically requires both a functional flagellum and the production/secretion of a biosurfactant. Published work has shown that the wild-type Pf0-1 is swarming deficient due to a point mutation in the gene, which until recently was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by Pf0-1.

View Article and Find Full Text PDF

Objective: This study aims to validate the existence of a microbiome within intraductal papillary mucinous neoplasm (IPMN) that can be differentiated from the taxonomically diverse DNA background of next-generation sequencing procedures.

Design: We generated 16S rRNA amplicon sequencing data to analyse 338 cyst fluid samples from 190 patients and 19 negative controls, the latter collected directly from sterile syringes in the operating room. A subset of samples (n=20) and blanks (n=5) were spiked with known concentrations of bacterial cells alien to the human microbiome to infer absolute abundances of microbial traces.

View Article and Find Full Text PDF

Swarming motility in pseudomonads typically requires both a functional flagellum and production/secretion of a biosurfactant. Published work has shown that the wild-type Pf0-1 is swarming-deficient due to a point mutation in the gene, which until recently, was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by Pf0-1.

View Article and Find Full Text PDF

The ability to measure neutralizing antibodies on large scale can be important for understanding features of the natural history and epidemiology of infection, as well as an aid in determining the efficacy of interventions, particularly in outbreaks such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Because of the assay's rapid scalability and high efficiency, serology measurements that quantify the presence rather than function of serum antibodies often serve as proxies of immune protection. Here, we report the development of a high-throughput, automated fluorescence-based neutralization assay using SARS-CoV-2 virus to quantify neutralizing antibody activity in patient specimens.

View Article and Find Full Text PDF

Genomic studies and experiments with permeability-deficient strains have revealed a variety of biological targets that can be engaged to kill Gram-negative bacteria. However, the formidable outer membrane and promiscuous efflux pumps of these pathogens prevent many candidate antibiotics from reaching these targets. One such promising target is the enzyme FabI, which catalyzes the rate-determining step in bacterial fatty acid biosynthesis.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells.

View Article and Find Full Text PDF