Medium- and heavy-duty vehicles are 21% of US transportation greenhouse gas (GHG) emissions and a major source of air pollution. We explore how the total cost of driving (TCD) of zero-emission vehicles (ZEVs), including battery electric vehicles and hydrogen fuel cell electric vehicles (EVs and FCEVs), could evolve under alternative scenarios. With continued improvements in vehicles and fuels, ZEVs can rapidly become viable, potentially reaching TCD parity or better compared to diesel vehicles by 2035 for all market segments.
View Article and Find Full Text PDFPassenger and freight travel account for 28% of U.S. greenhouse gas (GHG) emissions today.
View Article and Find Full Text PDFIn 2019, U.S. petroleum refineries emitted 196 million metric tons (MT) of CO, while the well-to-gate and the full life cycle CO emissions were significantly higher, reaching 419 and 2843 million MT of CO, respectively.
View Article and Find Full Text PDFGlycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure-activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker.
View Article and Find Full Text PDFUnlabelled: Glycoside hydrolase family 7 (GH7) cellobiohydrolases (CBHs) are enzymes commonly employed in plant cell wall degradation across eukaryotic kingdoms of life, as they provide significant hydrolytic potential in cellulose turnover. To date, many fungal GH7 CBHs have been examined, yet many questions regarding structure-activity relationships in these important natural and commercial enzymes remain. Here, we present the crystal structures and a biochemical analysis of two GH7 CBHs from social amoeba: Dictyostelium discoideum Cel7A (DdiCel7A) and Dictyostelium purpureum Cel7A (DpuCel7A).
View Article and Find Full Text PDFClostridium thermocellum is the most efficient microorganism for solubilizing lignocellulosic biomass known to date. Its high cellulose digestion capability is attributed to efficient cellulases consisting of both a free-enzyme system and a tethered cellulosomal system wherein carbohydrate active enzymes (CAZymes) are organized by primary and secondary scaffoldin proteins to generate large protein complexes attached to the bacterial cell wall. This study demonstrates that C.
View Article and Find Full Text PDFBackground: One of the primary industrial-scale cellulase producers is the ascomycete fungus, Hypocrea jecorina, which produces and secretes large quantities of diverse cellulolytic enzymes. Perhaps the single most important biomass degrading enzyme is cellobiohydrolase I (cbh1or Cel7A) due to its enzymatic proficiency in cellulose depolymerization. However, production of Cel7A with native-like properties from heterologous expression systems has proven difficult.
View Article and Find Full Text PDFHypocrea jecorina, the sexual teleomorph of Trichoderma reesei, has long been favored as an industrial cellulase producer, first utilizing its native cellulase system and later augmented by the introduction of heterologous enzymatic activities or improved variants of native enzymes. Expression of heterologous proteins in H. jecorina was once considered difficult when the target was an improved variant of a native cellulase.
View Article and Find Full Text PDFThe economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydrolysis. Recent metabolic engineering efforts have resulted in a strain of Thermoanaerobacterium saccharolyticum that can convert C(5) and C(6) sugars, as well as insoluble xylan, into ethanol at high yield.
View Article and Find Full Text PDFBackground: A previously developed mathematical model of low solids thermophilic simultaneous saccharification and fermentation (tSSF) with Avicel was unable to predict performance at high solids using a commercial cellulase preparation (Spezyme CP) and the high ethanol yield Thermoanaerobacterium saccharolyticum strain ALK2. The observed hydrolysis proceeded more slowly than predicted at solids concentrations greater than 50 g/L Avicel. Factors responsible for this inaccuracy were investigated in this study.
View Article and Find Full Text PDFStudies were undertaken to understand phenomena operative during simultaneous saccharification and fermentation (SSF) of a model cellulosic substrate (Avicel) at 50°C with enzymatic hydrolysis mediated by a commercial cellulase preparation (Spezyme CP) and fermentation by a thermophilic bacterium engineered to produce ethanol at high yield, Thermoanaerobacterium saccharolyticum ALK2. Thermal inactivation at 50 °C, as shown by the loss of 50% of enzyme activity over 4 days in the absence of ethanol, was more severe than at 37 °C, where only 25% of enzyme activity was lost. In addition, at 50 °C ethanol more strongly influenced enzyme stability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation.
View Article and Find Full Text PDF