Cyclic peptides are an important class of molecules that gained significant attention in the field of drug discovery due to their unique pharmacological characteristics and enhanced proteolytic stability. Yet, gastrointestinal degradation remains a major hurdle in the discovery of orally bioavailable cyclic peptides. Soft spot identification (SSID) of the regions in the cyclic peptide sequence susceptible to amide hydrolysis by proteases is used in the discovery stage to guide medicinal chemistry design.
View Article and Find Full Text PDFCyclic peptides are an emerging therapeutic modality over the past few decades. To identify drug candidates with sufficient proteolytic stability for oral administration, it is critical to pinpoint the amide bond hydrolysis sites, or soft spots, to better understand their metabolism and provide guidance on further structure optimization. However, the unambiguous characterization of cyclic peptide soft spots remains a significant challenge during early stage discovery studies, as amide bond hydrolysis forms a linearized isobaric sequence with the addition of a water molecule, regardless of the amide hydrolysis location.
View Article and Find Full Text PDFToxicology studies in nonhuman primates were conducted to evaluate selective, brain penetrant inhibitors of LRRK2. GNE 7915 was limited to 7-day administration in cynomolgus monkeys at 65 mg/kg/day or limited to 14 days in rhesus at 22.5 mg/kg b.
View Article and Find Full Text PDFGenetic mutation of the leucine-rich repeat kinase 2 (LRRK2) protein has been associated with Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder that is devoid of efficacious disease-modifying therapies. Herein, we describe the invention of an amidoisoquinoline (IQ)-derived LRRK2 inhibitor lead chemical series. Knowledge-, structure-, and property-based drug design in concert with rigorous application of calculations and presynthesis predictions enabled the prioritization of molecules with favorable CNS "drug-like" physicochemical properties.
View Article and Find Full Text PDFDrug-induced liver injury (DILI) is a frequent and dangerous adverse effect faced during preclinical and clinical drug therapy. DILI is a leading cause of candidate drug attrition, withdrawal and in clinic, is the primary cause of acute liver failure. Traditional diagnostic markers for DILI include alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP).
View Article and Find Full Text PDFIndoleamine-2,3-dioxygenase 1 (IDO1) and tryptophan-2,3-dioxygenase 2 (TDO2) degrade tryptophan (Trp) to kynurenine (Kyn), and these enzymes have promise as therapeutic targets. A comprehensive characterization of potential safety liabilities of IDO1 and TDO2 inhibitors using knockout (KO) mice has not been assessed, nor has the dual Ido1/Tdo2 KO been reported. Here we characterized male and female mice with KOs for Ido1, Tdo2, and Ido1/Tdo2 and compared findings to the wild type (WT) mouse strain, evaluated for 14 days, using metabolomics, transcriptional profiling, behavioral analysis, spleen immunophenotyping, comprehensive histopathological analysis, and serum clinical chemistry.
View Article and Find Full Text PDFThe robust transcriptional plasticity of liver mediated through xenobiotic receptors underlies its ability to respond rapidly and effectively to diverse chemical stressors. Thus, drug-induced gene expression changes in liver serve not only as biomarkers of liver injury, but also as mechanistic sentinels of adaptation in metabolism, detoxification, and tissue protection from chemicals. Modern RNA sequencing methods offer an unmatched opportunity to quantitatively monitor these processes in parallel and to contextualize the spectrum of dose-dependent stress, adaptation, protection, and injury responses induced in liver by drug treatments.
View Article and Find Full Text PDFHuman hepatocellular carcinoma cells, HepG2, are often used for drug mediated mitochondrial toxicity assessments. Glucose in HepG2 culture media is replaced by galactose to reveal drug-induced mitochondrial toxicity as a marked shift of drug IC50 values for the reduction of cellular ATP. It has been postulated that galactose sensitizes HepG2 mitochondria by the additional ATP consumption demand in the Leloir pathway.
View Article and Find Full Text PDFAryl hydrocarbon receptor (AhR) activation is associated with carcinogenicity of non-genotoxic AhR-activating carcinogens such as 2,3,7,8-tetrachlorodibenzodioxin (TCDD), and is often observed with drug candidate molecules in development and raises safety concerns. As downstream effectors of AhR signaling, the expression and activity of Cyp1a1 and Cyp1a2 genes are commonly monitored as evidence of AhR activation to inform carcinogenic risk of compounds in question. However, many marketed drugs and phytochemicals are reported to induce these Cyps modestly and are not associated with dioxin-like toxicity or carcinogenicity.
View Article and Find Full Text PDFInhibition of the bile salt export pump (BSEP) may be associated with clinical drug-induced liver injury, but is poorly predicted by preclinical animal models. Here we present the development of a novel rat model using siRNA knockdown (KD) of Bsep that displayed differentially enhanced hepatotoxicity to 8 Bsep inhibitors and not to 3 Bsep noninhibitors when administered at maximally tolerated doses for 7 days. Bsep KD alone resulted in 3- and 4.
View Article and Find Full Text PDFBackground: Inhibin B is a heterodimer glycoprotein that downregulates follicle-stimulating hormone and is produced predominantly by Sertoli cells. The potential correlation between changes in plasma Inhibin B and Sertoli cell toxicity was evaluated in male rats administered testicular toxicants in eight studies. Inhibin B fluctuations over 24 hr were also measured.
View Article and Find Full Text PDFPurpose: To analyze the authors' success with image-guided drainage of tuboovarian abscesses (TOAs).
Materials And Methods: Retrospective analysis of patients with image-guided TOA drainage from 1999 to 2008 was performed. Patient recovery without salpingo-oophorectomy was considered clinical success.
Rapid Commun Mass Spectrom
April 2002
Mass spectral analysis of tryptic digests of cross-linked proteins offers considerable promise as a simple technique to probe protein structure and study protein-protein interactions. We describe the use of a 1:1 mixture of isotopically labeled and unlabeled cross-linkers, disuccinimidyladipate (DSA) and dimethyladipimidate (DMA), to enhance visualization of cross-linked peptides in a tryptic digest. Optimized intramolecular reactions of cytochrome c and ribonuclease A (RNase A) with DSA yielded an average of two cross-links per protein molecule.
View Article and Find Full Text PDFPrevious studies have indicated that human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) are less active at blocking viral replication in HIV-1 infected peripheral blood monocytes/macrophages (M/M) than in HIV-1-infected T cells. We explored the hypothesis that oxidative modification and/or metabolism of the PIs in M/M might account for this reduced potency. We first tested the susceptibility of several PIs (kynostatin-272 [KNI-272], saquinavir, indinavir, ritonavir, or JE-2147) to oxidation after exposure to hydrogen peroxide (H(2)O(2)): only KNI-272 was highly susceptible to oxidation.
View Article and Find Full Text PDF