Publications by authors named "Kara Orr"

Type 1 diabetes (T1D) is a multifactorial disease involving genetic and environmental factors, including viral infection. We investigated the impact of interferon alpha (IFN-α), a cytokine produced during the immune response to viral infection or the presence of un-edited endogenous double-stranded RNAs, on human β-cell physiology. Intravital microscopy on transplanted human islets using a β-cell-selective reactive oxygen species (ROS) biosensor (RIP1-GRX1-roGFP2), revealed a subset of human β-cells that acutely produce ROS in response to IFN-α.

View Article and Find Full Text PDF

Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D.

View Article and Find Full Text PDF

Spinophilin is an F-actin binding and protein phosphatase 1 (PP1) targeting protein that acts as a scaffold of PP1 to its substrates. Spinophilin knockout () mice have decreased fat mass, increased lean mass, and improved glucose tolerance, with no difference in feeding behaviors. Although spinophilin is enriched in neurons, its roles in nonneuronal tissues, such as β cells of the pancreatic islets, are unclear.

View Article and Find Full Text PDF

Type 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet β cells. We hypothesize that inflammatory signaling within β cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in β cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature.

View Article and Find Full Text PDF

Macrophages and related myeloid cells are innate immune cells that participate in the early islet inflammation of type 1 diabetes (T1D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of proinflammatory eicosanoids, but its role and mechanisms in myeloid cells in the pathogenesis of islet inflammation have not been elucidated. Leveraging a model of islet inflammation in zebrafish, we show here that macrophages contribute significantly to the loss of β cells and the subsequent development of hyperglycemia.

View Article and Find Full Text PDF

Offspring of obese mothers suffer higher risks of type 2 diabetes due to increased adiposity and decreased β cell function. To date, the sex-differences in offspring islet insulin secretion during early life has not been evaluated extensively, particularly prior to weaning at postnatal day 21 (P21). To determine the role of maternal obesity on offspring islet insulin secretion, C57BL/6J female dams were fed chow or western diet from 4 weeks prior to mating to induce maternal obesity.

View Article and Find Full Text PDF

Replacement of islets/β-cells that provide long-lasting glucose-sensing and insulin-releasing functions has the potential to restore extended glycemic control in individuals with type 1 diabetes. Unfortunately, persistent challenges preclude such therapies from widespread clinical use, including cumbersome administration via portal vein infusion, significant loss of functional islet mass upon administration, limited functional longevity, and requirement for systemic immunosuppression. Previously, fibril-forming type I collagen (oligomer) was shown to support subcutaneous injection and in situ encapsulation of syngeneic islets within diabetic mice, with rapid (<24 h) reversal of hyperglycemia and maintenance of euglycemia for beyond 90 days.

View Article and Find Full Text PDF

Deoxyhypusine synthase (DHPS) uses the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly defined mechanisms. Because germline deletion of is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that enabled the inducible, postnatal deletion of specifically in postnatal islet β cells, which function to maintain glucose homeostasis.

View Article and Find Full Text PDF

The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate β-cell function in vivo.

View Article and Find Full Text PDF

Widespread use of pancreatic islet transplantation for treatment of type 1 diabetes (T1D) is currently limited by requirements for long-term immunosuppression, limited donor supply, and poor long-term engraftment and function. Upon isolation from their native microenvironment, islets undergo rapid apoptosis, which is further exacerbated by poor oxygen and nutrient supply following infusion into the portal vein. Identifying alternative strategies to restore critical microenvironmental cues, while maximizing islet health and function, is needed to advance this cellular therapy.

View Article and Find Full Text PDF

Loss of functional islet β-cell mass through cellular death or dedifferentiation is thought to lead to dysglycemia during the progression from obesity to type 2 diabetes. To assess these processes in a mouse model of obesity, we performed measures of circulating cell-free differentially methylated insulin II ( Ins2) DNA as a biomarker of β-cell death and aldehyde dehydrogenase 1 family member A3 (ALDH1A3) and forkhead box 01 (Foxo1) immunostaining as markers of β-cell dedifferentiation. Eight-week-old, C57BL/6J mice were fed a low-fat diet (LFD; 10% kcal from fat) or a high-fat diet (HFD; 60% kcal from fat) and were followed longitudinally for up to 13 wk to measure glycemic control and β-cell mass, death, and dedifferentiation.

View Article and Find Full Text PDF